Preview

Crede Experto: transport, society, education, language

Advanced search

THE METHOD OF EXPERIMENTAL EVALUATION OF ACCURACY OF THE DJI MAVIC 2 ZOOM NAVIGATION SYSTEM

https://doi.org/10.51955/2312-1327_2024_4_127

Abstract

Rapid development of unmanned aircraft systems (UAS) and their application areas requires safe and efficient airspace (AS) for various categories of its users. One of the important tasks when using AS is planning a trajectory and flying the unmanned aerial vehicles (UAV) with account of the accuracy characteristics of on-board navigation systems. The paper presents a methodology for experimentally evaluating the accuracy characteristics of the on-board navigation system of the DJI MAVIC 2 ZOOM quadcopter. The methodology is based on the formation of a UAV desired track, with the help of which it is possible to estimate the deviation error in one of the horizontal coordinates and altitude. The experiments were conducted for real UAV flights at different altitudes and speeds. Semi-natural experiments were conducted with the GNSS SN-3803M signal simulator allowing us to determine the state of operability of the transport complex with a reduction in the number of the working constellation satellites.

About the Authors

R. O. Roman O. Arefyev
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Roman O. Arefyev, Candidate of Technical Sciences, Associate Professor

3, Kommunarov str. Irkutsk, 664047



O. N. Skrypnik
Belarusian State Academy of Aviation
Belarus

Oleg N. Skrypnik, Doctor of Technical Sciences, Full professor

77, Uborevich str. Minsk, 220096



N. G. Arefyeva (Astrakhanceva)
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Natalya G. Arefyeva (Astrakhanceva), Candidate of Technical Sciences, Associate Professor

3, Kommunarov str. Irkutsk, 664047



References

1. Arefyev R. O., Skrypnik O. N., Arefyeva N. G. (2024). Experimental assessment of spatial stabilization accuracy of the DJI AIR 2S quadcopter. Crede Experto: transport, society, education, language. 1: 128-145. DOI 10.51955/2312-1327_2024_1_128. EDN UQDIOE. (in Russian)

2. Barrado C., Boyero M., Brucculeri L., Ferrara G., Hately A., Hullah P., Martin-Marrero D., Pastor E., Rushton A. P., Volkert A. (2020). U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations. Aerospace. 3: 24.

3. DJI MAVIC 2 (2024). Available at: URL: https://www.dji.com/ru/mavic-2/info (accessed 10 October 2024).

4. Ermakov A. K., Portnova T. Yu., Lezhankin B. V., Erokhin V. V. (2021). Algorithms for controlling the trajectories of unmanned aircraft systems when flying as part of a group. Volnovaya elektronika i infokommunikacionnye sistemy: Materialy XXIV Mezhdunarodnoj nauchnoj konferencii. V 3-h chastyah, Sankt-Peterburg, 31 maya – 04 2021 goda. Tom Chast' 2. Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya. 62-69. EDN YIEIWM. (in Russian)

5. Erokhin V. V., Lezhankin B. V., Bolelov E. A. (2023). Estimation of UAV trajectory parameters with different configurations of navigation information sources. Uspekhi sovremennoj radioelektroniki. 77(6): 35-49. DOI 10.18127/j20700784-202306-04. EDN MVHGGW. (in Russian)

6. Grant A., Williams P., Ward N., Baske S. (2009). GPS jamming and the impact on maritime navigation. The Journal of Navigation. 62(2): 173-187.

7. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2007). GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media. 2007. 16 p.

8. Huttunen M. (2019). The u-space concept. Air and Space Law. 44(1): 69-89.

9. ICAO GANP PORTAL. (2024). Available at: https://www4.icao.int/ganpportal/ASBU/Thread (accessed 10 October 2024).

10. Kaplan E., Hegarty C. (2005). Understanding GPS: principles and applications. Bedford: Artech house, 2005. 723 p.

11. Lubbers B., Mildner S., Oonincx P., Scheele A. (2015). A study on the accuracy of GPS positioning during jamming. 2015 International Association of Institutes of Navigation World Congress (IAIN). – IEEE. 2015. 1-6.

12. Perov A. I., Kharisov V. N. (2010). GLONASS. Principles of construction and operation. Moscow: Radiotekhnika, 2010. 801 p. (in Russian)

13. Salamh F. E., Mirza M. M., Karabiyik U. (2021). UAV forensic analysis and software tools assessment: DJI Phantom 4 and Matrice 210 as case studies. Electronics. 10(6): 733.

14. SESAR Roadmap for the Safe Integration of Drones into all Classes of Airspace. SESAR Joint Undertaking: Brussels, Belgium. 1-33.

15. Skrypnik O. N., Arefyev R. O., Arefyeva N. G. (2019). Estimation of positioning error characteristics of combined GLONASS / GPS receivers. Modern high technologies. 10-2. 296-301. (In Russian)

16. Soloviev Yu. A. (2000). Satellite navigation systems. Eko-Trendz. 2000. 270 p. (in Russian)

17. Veremeenko K. K., Koshelev B. V., Solovyev Yu. A. (2010). The analysis of development of the integrated inertial & satellite navigation systems. Novosti navigacii. 4: 35-49. (in Russian)


Review

For citations:


Roman O. Arefyev R.O., Skrypnik O.N., Arefyeva (Astrakhanceva) N.G. THE METHOD OF EXPERIMENTAL EVALUATION OF ACCURACY OF THE DJI MAVIC 2 ZOOM NAVIGATION SYSTEM. Crede Experto: transport, society, education, language. 2024;(4):127-139. (In Russ.) https://doi.org/10.51955/2312-1327_2024_4_127

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)