Preview

Crede Experto: transport, society, education, language

Advanced search

Experimental Assessment of Spatial Stabilization Accuracy of the DJI Air 2S Quadcopter

https://doi.org/10.51955/2312-1327_2024_1_128

Abstract

The paper proposes a method for assessing the actual accuracy of spatial stabilization of a DJI Air 2S quadcopter using its video camera and processing the resulting video sequences with a developed software package in the mode of hovering over a reference object. The software package was implemented using the OpenCV library in Python. To register deviations of stabilization systems from a given position, it is proposed to use a reference field with known geometric parameters, information about which is entered into the processing algorithm. The main task of the software package is to identify the boundaries of the reference field and measure the geometric sides in pixels which allows you to determine the center of the field and measure its deviation relative to the center of the image as well as determine the height of the unmanned aerial vehicle flight. In the work the height measurement algorithm was tested. This technique is used to evaluate the accuracy of quadcopter stabilization with various combinations of navigation sensors used for this purpose. A statistical analysis of the obtained results was carried out and conclusions were drawn about compliance with the characteristics of positioning accuracy declared by the manufacturer using optical obstacle avoidance systems and satellite navigation systems. 

About the Authors

Roman O. Arefyev
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Roman O. Arefyev, Candidate of Technical Sciences, Associate Professor,

3, Kommunarov str., Irkutsk, 664047.



Oleg N. Skrypnik
Belarusian State Academy of Aviation
Belarus

Oleg N. Skrypnik, Doctor of Technical Sciences, Full Professor,

77, Uborevich str., Minsk, 220096.



Natalya G. Arefyeva (Astrakhanceva)
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Natalya G. Arefyeva (Astrakhanceva), Candidate of Technical Sciences, Associate Professor,

3, Kommunarov str., Irkutsk, 664047.



References

1. Bradski G. (2000). The OpenCV Library // Dr. Dobb's Journal: Software Tools for the Professional Programmer. 25(11). 120-123. EDN EOYXGL.

2. Czyża S., Szuniewicz K., Kowalczyk K., Dumalski A., Ogrodniczak M., Zieleniewicz Ł. (2023). Assessment of Accuracy in Unmanned Aerial Vehicle (UAV) Pose Estimation with the REALTime Kinematic (RTK) Method on the Example of DJI Matrice 300 RTK. Sensors. 23, 2092.

3. Erokhin V. V., Lezhankin B. V., Bolelov E. A. (2023). Estimation of the parameters of the trajectory movement of an unmanned aerial vehicle with different configurations of navigation information sources. Telecommunications and Radio Engineering. 77(6): 35-49. EDN MVHGGW. (In Russian)

4. Ermakov A. K. Portnova T. Yu., Lezhankin B. V., Erokhin V. V. (2021). Trajectory control algorithms for unmanned aircraft complexes flying in formation. Volnovaya elektronika i infokommunikacionnye sistemy : Materialy XXIV Mezhdunarodnoj nauchnoj konferencii. V 3-h chastyah. Sankt-Peterburg: State University of Aerospace Instrumentation. 391: 62-69. EDN YIEIWM. (In Russian)

5. Ekaso D., Nex F., Kerle N. (2020). Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-Spat. Inf. Sci. 23: 165-181.

6. Glomsvoll O. Jamming of GPS & GLONASS signals // Department of Civil Engineering, Nottingham Geospatial Institute, 2014. 80 p.

7. Rosebrock A. (2015). Find distance from camera to object/marker using Python and OpenCV. Available at: https://pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-usingpython-opencv/ (accessed 10 February 2024)

8. ICAO (2008). Doc. 9613/AN 937. Performance based navigation (PBN) Manual. Third edition. 2008. 294 p.

9. Suzuki S., KeiichiA be (1985). Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing. 30(1): 32-46.

10. Mezhetov M. A., Shalayev A. A., Fedorov A. V. (2023). Perspective scheme of automated radio monitoring system in tasks of air traffic managment. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoj aviacii. 4(41): 74-85. EDN CLTAPD. (In Russian)

11. Skrypnik O. N., Arefyev R. O., Arefyeva N. G. (2019). Estimation of positioning error characteristics of combined GLONASS / GPS receivers. Modern high technologies. 10-2. 296-301. (In Russian)

12. Skrypnik O. N., Vishnevskij R. A., Zavalej M. K. (2023). Flight safety problems when integrating unmanned aviation systems into the common air space. Grazhdanskaya aviaciya na sovremennom etape razvitiya nauki, tekhniki i obshchestva: Sbornik tezisov dokladov Mezhdunarodnoj nauchnotekhnicheskoj konferencii, posvyashchennoj 100-letiyu otechestvennoj grazhdanskoj aviacii. Moscow: ID Akademii imeni N. E. Zhukovskogo. 226-228. EDN QLOQLM (In Russian)

13. Strategiya razvitiya bespilotnoj aviacii Rossijskoj Federacii na period do 2030 goda i na perspektivu do 2035 goda, utverzhdena rasporyazheniem Pravitel'stva RF ot 21.06.2023 № 1630-р. Available at: http://static.government.ru/media/fles/3m4AHa9s3PrYTDr316ibUtyEVUpnRT2x.pdf (accessed 10 February 2024). (In Russian).

14. Shubnikova I. S., Palaguta K. A. (2013). Analysis of methods and algorithms for determining object parameters and distance to it by image. Trudy mezhdunarodnogo simpoziuma "Nadezhnost' i kachestvo". 352-355. EDN RXEXGB. (In Russian).

15. Trusfus M. (2019). Distance measurement using a single camera image. XXIV tupolevskie chteniya (shkola molodyh uchenyh). 6(4): 454-460. EDN NOUCFR. (In Russian).


Review

For citations:


Arefyev R.O., Skrypnik O.N., Arefyeva (Astrakhanceva) N.G. Experimental Assessment of Spatial Stabilization Accuracy of the DJI Air 2S Quadcopter. Crede Experto: transport, society, education, language. 2024;(1):128-145. (In Russ.) https://doi.org/10.51955/2312-1327_2024_1_128

Views: 11

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)