Preview

Crede Experto: transport, society, education, language

Advanced search

ANALYSIS OF THE PRINCIPLES OF PROCESSING NAVIGATION INFORMATION AND CONSTRUCTING THE WORKING ZONE OF A MULTI-POSITION SURVEILLANCE SYSTEM

https://doi.org/10.51955/2312-1327_2024_3_76

Abstract

The use of modern surveillance equipment in accordance with ICAO recommendations is aimed at improving the efficiency of air transportation, increasing the capacity of airspace and airfields, and improving the safety of flights and ground operations. © Д.Ю.Урбанский, 2024

The introduction in the Russian Federation of a multi-position surveillance system (MPSS) based on automatic dependent surveillance of the broadcast type (ADS-B) is intended to facilitate the implementation of state and regional aviation development programs in terms of creating conditions for improving flight safety, availability and quality of air navigation services for airspace users. Therefore, the analysis of the principles of constructing a working area and processing navigation information in a multi-position surveillance system for improving the accuracy of aircraft position-fixing is an urgent research task. An approach to improving the efficiency of the MPSS operation when processing information in conditions of noise and interference has been considered. Analysis of the results of modeling the proposed algorithm based on the discrete Kalman filter shows high accuracy of estimating the planned coordinates of an aircraft. Specialized software has been developed to automate the process of calculating and constructing working areas of a multi-position surveillance system.

About the Author

D. Y. Urbansky
Joint Stock Company «Angara» Airlines
Russian Federation

Dmitry Y. Urbansky

2, Shiryamova Irkutsk, 664009



References

1. Bolelov E. A., Gevak N. V., Erokhin V. V., [et al.]. (2023). Air transport surveillance systems. Specific means of observation. Multi-position surveillance systems. Moscow: ID Akademii Zhukovskogo. 2023. 80 p. EDN UPSCGQ. (in Russian)

2. Bolelov E. A., Lezhankin B. V., Erokhin V. V., Mezhetov M. A. (2023). Study of the accuracy characteristics of the wide-area multi-position surveillance system of the Irkutsk regional center for air traffic management. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoj aviacii. 3(40): 89-101. EDN LKMFMX. (in Russian)

3. Emeljancev G., Stepanov A. (2016). Integrated inertial and satellite systems of orientation and navigation. St. Petersburg: SSC of the RF Concern Elektropribor, 2016. 394 p.

4. Ermakov, A. K., Portnova, T. Yu., Lezhankin, B. V., Erokhin, V. V. (2021). Algorithms for controlling the trajectories of unmanned aircraft systems when flying as part of a group. Volnovaya elektronika i infokommunikacionnye sistemy: Materialy XXIV Mezhdunarodnoj nauchnoj konferencii. V 3-h chastyah, Sankt-Peterburg, 31 maya – 04 2021 goda. Tom Chast' 2. Sankt-Peterburg: SanktPeterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya. 2021. 62-69. EDN YIEIWM. (in Russian)

5. Erokhin V. V. (2019). Optimization of navigation support for aircraft with free flight routing: Special'nost' 05.22.13 «Navigaciya i upravlenie vozdushnym dvizheniem»: dissertaciya na soiskanie uchenoj stepeni doktora tekhnicheskih nauk. 2019. 287 p. EDN BZSGAB. (in Russian)

6. Erokhin V. V., Lezhankin B. V., Bolelov E. A. (2023). Estimation of UAV trajectory parameters with different configurations of navigation information sources. Uspekhi sovremennoj radioelektroniki. 77(6): 35-49. DOI 10.18127/j20700784-202306-04. EDN MVHGGW. (in Russian)

7. Erokhin V. V., Lezhankin B. V., Portnova T. Yu., Povarenkin N. V. (2021). Determining the location of an aircraft in a multi-position surveillance system based on multilateration technology. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii: sbornik trudov X Mezhdunarodnoj nauchnoprakticheskoj konferencii, Irkutsk, 14–15 oktyabrya 2021 goda. Tom 2. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya «Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii». 92-105. EDN QPUUJP. (in Russian)

8. Global'nyj aeronavigacionnyj plan na 2013-2028 gg. (2013). International Civil Aviation Organization. Doc 9750-AN/963. 147 p. (in Russian)

9. Grishin Yu. P., Ipatov V. P., Kazarinov Yu. M. (1990). Radio engineering systems. Moscow: Vyssh. Shk. 1990. 496 p. (in Russian)

10. Khudov H., Diakonov O., Kuchuk N., Maliuha V., Furmanov K., Mylashenko I. et. al. (2021). Method for determining coordinates of airborne objects by radars with additional use of ADS-B receivers. Eastern-European Journal of Enterprise Technologies. 4 (9(112)): 54–64. DOI 10.15587/17294061.2021.238407.

11. Khudov H., Mynko P., Ikhsanov S., Diakonov O., Kovalenko O., Solomonenko Y., Drob Y., Kharun O., Сherkashyn S., Serdiuk O. (2021). Development a method for determining the coordinates of air objects by radars with the additional use of multilateration technology. EasternEuropean Journal of Enterprise Technologies. 5 (9(113)): 6–16. DOI 10.15587/17294061.2021.242935.

12. Koncepciya vnedreniya avtomaticheskogo zavisimogo nablyudeniya na osnove edinogo standarta s razvitiem do funkcionala mnogopozicionnyh sistem nablyudeniya v Rossijskoj Federacii: utv. rasporyazheniem Mintransa Rossii ot 25 aprelya 2018 goda № 68. (in Russian)

13. Leonardi M., Mathias A., Galati G. (2009). Two efficient localization algorithms for multilateration. International Journal of Microwave and Wireless Technologies. 1(3): 223–229. DOI 10.1017/s1759078709000245.

14. Leshchenko S. P., Kolesnyk O. M., Hrytsaienko S. A., Burkovskyi S. I. (2017). Use of the ADS-B information in order to improve quality of the air space radar reconnaissance. Science and Technology of the Air Force of Ukraine,.3 (28): 69–75. DOI 10.30748/nitps.2017.28.09.

15. Lezhankin B. V., Erokhin V. V., Maryukhnenko V. S. (2019). System analysis of the problem of determining the location of the aircraft in the multiposital observation system. Informacionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami. 1(2): 46-61. EDN ZDOOGT. (in Russian)

16. Mantilla-Gaviria I. A., Leonardi M., Balbastre-Tejedor J. V., de los Reyes E. (2013). On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Mathematical and Computer Modelling. 57 (7-8): 1999–2008. DOI 10.1016/j.mcm.2012.03.004

17. Monakov A. A. (2018). Algorithm for estimating the location of an object in active multilateration systems. XXIV Mezhdunar. nauch.- tehn. konf. "Radiolokaciya, navigaciya, svyaz'". 3: 134–142. Monakov A. A. (2018). Localization algorithm for multilateration systems. Journal of the Russian Universities. Radioelectronics. 4: 38–46. DOI 10.32603/1993-8985-2018-21-4-38-46.

18. Monakov A. A. (2018). Modified Bancroft Algorithm for Multilateration Systems. Journal of the Russian Universities. Radioelectronics. 1: 50–55. DOI 10.32603/1993-8985-2018-21-1-50-55.

19. Schau H., Robinson A. (1987). Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech, and Signal Processing. 35 (8): 1223–1225. DOI 10.1109/tassp.1987.1165266.

20. Skripnik O. N., Arefyev R. O. (2020). Optimization of the mobile pseudo-satellite trajectory to improve the accuracy of the integrated GLONASS navigation-time field. Sovremennye naukoemkie tekhnologii. 2: 51-58. DOI 10.17513/snt.37914. EDN KZCVNA. (in Russian)

21. Skripnik O. N., Erokhin V. V. (2008). Possibilities of using aircraft as sources of navigation information in the local navigation-time field. Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 136: 78-85. (in Russian)

22. Skrypnik O., Shegidevich A. (2019). Features of working areas of multilateration systems. The Aviation Herald. 1 (1): 10–16. DOI bgaa.by/sites/default/files/inline-files/aviacionnyy-vestnikzhurnal-no1-19_12.pdf.

23. Stepanov O. A. (2010). Fundamentals of the Theory of Estimation with Applications to the Problems of Processing Navigational Information. Ch. 1: Vvedenie v teoriyu ocenivaniya. Saint Petersdurg: GNC RF CNII «Elektropribor», 2010. 496 p. (in Russian)

24. Stepanov O. A. (2010). Fundamentals of the Theory of Estimation with Applications to the Problems of Processing Navigational Information. Ch. 2: Vvedenie v teoriyu fil'tracii. Saint Petersdurg: GNC RF CNII «Elektropribor», 2010. 517 p. (in Russian)

25. Tikhonov V. I., Kharisov V. N. (1991). Statistical analysis and synthesis of radio engineering devices and systems. Moscow: Radio i svyaz', 1991. 608 p. (in Russian)

26. Yarlykov M. S. (1985). Statistical Theory of Radio Navigation. Moscow: Radio i svyaz', 1985. 344 p. (in Russian)

27. Yarlykov M. S., Mironov M. A. (1993). Markov theory of estimation of random processes. Moscow: Radio i svyaz', 1993. 464 p. (in Russian)

28. Yeromina N., Kravchenko I., Kobzev I., Volk M., Borysenko V., Lukyanova V. et. al. (2021). The Definition of the Paramethers of Superconducting Film for Production of Protection Equipment Against Electromagnetic Environmental Effects. International Journal of Emerging Technology and Advanced Engineering. 11 (7): 38–47. DOI 10.46338/ijetae0721_06.


Review

For citations:


Urbansky D.Y. ANALYSIS OF THE PRINCIPLES OF PROCESSING NAVIGATION INFORMATION AND CONSTRUCTING THE WORKING ZONE OF A MULTI-POSITION SURVEILLANCE SYSTEM. Crede Experto: transport, society, education, language. 2024;(3):76-102. (In Russ.) https://doi.org/10.51955/2312-1327_2024_3_76

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)