Preview

Crede Experto: transport, society, education, language

Advanced search

ANALYSIS OF THE METHODOLOGICAL BASIS OF AIRCRAFT FLIGHT PATH CONTROL

https://doi.org/10.51955/2312-1327_2024_3_59

Abstract

In the International Civil Aviation Organization, an important area is the development of new approaches to constructing and maintaining effective aircraft flight paths.

Developing a flight control system capable of not only stabilizing the position, but also accurately tracking the trajectory for an aircraft is a rather complex task. In this paper, an algorithm for generating trajectory tracking control is proposed based on the methods of optimal control theory (OCT) using optimal filtering theory (OFT) approaches to estimate the trajectory motion parameters. The formulation of an autonomous optimal control problem is considered. In the paper, the flight route maintenance quality indicator is formulated as minimizing the deviation of the actual flight path from the specified one. The expediency of implementing the proposed approach is confirmed by the methods of simulation statistical modeling. To test the validity of the proposed approach, a simulation modeling of a typical flight path tracking under expected operating conditions was performed. Analysis of the results obtained during the simulation modeling shows that the deviation of the controlled flight path parameters from the specified values does not exceed 5 m. The results demonstrate the efficiency of the algorithm for tracking a specified flight path and its stability to external disturbances. 

About the Author

N. P. Malisov
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Nikolay P. Malisov

3, Kommunarov Irkutsk, 664047



References

1. Aleshechkin A. M. (2016). Optimization of trajectories of dynamic controlled objects in an integrated navigation system based on inertial and satellite technologies. Giroskopiya i navigaciya. 24. 2(93): 3-19. DOI: 10.17285/0869-7035.2016.24.2.003-019. (In Russian)

2. Degtyarev G. L., Rizaev I. S. (1991). Synthesis of locally optimal control algorithms for aircraft. Moscow: Mashinostroenie. 1991. p. 304. (In Russian)

3. Ermakov A. K., Portnova T. Yu., Lezhankin B. V., Erokhin V. V. (2021). Algorithms for controlling the trajectories of unmanned aircraft systems when flying as part of a group. Volnovaya elektronika i infokommunikacionnye sistemy: Materialy XXIV Mezhdunarodnoj nauchnoj konferencii. V 3-h chastyah, Sankt-Peterburg, 31 maya – 04 2021 goda. Tom Chast' 2. – Sankt-Peterburg: SanktPeterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya. 62-69. EDN YIEIWM. (In Russian)

4. Erokhin V. V. (2018). Control of the trajectory of an aircraft during a flight along a given route based on the global navigation satellite system. Izvestiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. 3: 49-56. (In Russian)

5. Erokhin V. V. (2019). Optimization of navigation support for aircraft with free flight routing:

6. Special'nost' 05.22.13 «Navigaciya i upravlenie vozdushnym dvizheniem»: dissertaciya na soiskanie uchenoj stepeni doktora tekhnicheskih nauk. 2019. 287 p. EDN BZSGAB. (In Russian)

7. Erokhin V. V., Lezhankin B. V., Bolelov E. A. (2023). Estimation of UAV trajectory parameters with different configurations of navigation information sources. Uspekhi sovremennoj radioelektroniki. 77(6): 35-49. DOI: 10.18127/j20700784-202306-04. EDN MVHGGW. (In Russian)

8. Global'nyj aeronavigacionnyj plan na 2013-2028 gg. (2013). International Civil Aviation Organization. Doc 9750-AN/963. p. 147. (In Russian)

9. Kharisov V. N., Perov A. I. (1996). Some issues of using theories of optimal filtering and optimal control for the synthesis of information systems. Radiotekhnika. 7: 7-12. (In Russian)

10. Maolaaisha A. (2015). Free-Flight Trajectory Optimization by Mixed Integer Programming. A thesis submitted to fulfillment of the requirements for the degree of master in science. Angewandte Mathematik und Optimierung Schriftenreihe (AMOS) # 24, University of Hamburg. p. 74

11. Merkulov V. I., Milyakov D. A., Radominov O. E., Chernov V. S. (2016). Methods of trajectory control of observation in integrated multi-sensor two-position airborne radio monitoring systems. Zhurn. Radioelektroniki. 4: 7. (In Russian)

12. Merkulov V. I., Verba V. S., Ilchuk A. R. (2018). Automatic target tracking in radars of integrated aviation complexes: V. 1. Theoretical foundations. Radar as part of an integrated aviation complex. Moscow: Radiotekhnika. 2018. p. 357. (In Russian)

13. Monakov A. A., Kiselev V. Yu. (2015). Prediction of aircraft trajectory in automated air traffic control

14. systems. Informacionno-upravlyayushchie sistemy. 4: 33-40. (in Russian)

15. Nuic A. (2014). User Manual for the Base of Aircraft Data (BADA). Revision 3.12. EUROCONTROL Experimental Centre. 2014. 106 p.

16. Rub´en A. G. (2015). Commercial aircraft trajectory optimization using optimal control. Bachelor Thesis, Universidad Carlos III de Madrid. 2015. 64 p.

17. Sage E. P., White C. S. (1982). Optimal Control of Systems. Moscow: Radio i svyaz'. 392 p. (In Russian)

18. Soler M., Olivares A., Staffetti E. Bonami P. (2013). Multiphase Mixed-Integer Optimal Control Approach to Aircraft Trajectory Optimization. Journal of Guidance, Control, and Dynamics. 36(5): 1267-1277. DOI 10.2514/1.60492.

19. Stepanov O. A. (2010). Fundamentals of the Theory of Estimation with Applications to the Problems of Processing Navigational Information. Ch. 1: Vvedenie v teoriyu ocenivaniya. Saint Petersdurg:

20. GNC RF CNII «Elektropribor», 2010. 496 p. (In Russian)

21. Stepanov O. A. (2010). Fundamentals of the Theory of Estimation with Applications to the Problems of Processing Navigational Information. Ch. 2: Vvedenie v teoriyu fil'tracii. Saint Petersdurg: GNC

22. RF CNII «Elektropribor», 2010. 517 p. (In Russian)

23. Stratonovich R. L. (1966). Conditional Markov processes and their application to the theory of optimal control. Moscow: Izd-vo MGU. 1966. 319 p. (In Russian)

24. Tikhonov V. I., Kharisov V. N. (1991). Statistical analysis and synthesis of radio engineering devices and systems. Moscow: Radio i svyaz'. 1991. 608 p. (In Russian)

25. Toratani D. (2016). Study on Simultaneous Optimization Method for Trajectory and Sequence of Air Traffic Management. Doctoral Thesis. Yokohama National University. 2016. 101 p.

26. Voronov A. A., Kim D. P., Lokhin V. M. et al. (1986). Theory of automatic control. V. 2. Teoriya nelinejnyh i special'nyh sistem avtomaticheskogo upravleniya. 2-e izd., pererab. i dop. Moscow: Vyssh. shk., 1986. p. 504. (In Russian)

27. Voronov E. M., Karpunin A. A. (2011). Ensuring trajectory safety in the problem of flying around a dynamic circular zone. Nauka i obrazovanie. 12: 1-12. (In Russian)

28. Voronov E. M., Repkin A. L., Savchuk A. M., Sychev S. I. (2014). Formation of the structure of the trajectory control of the aircraft and multicriterial optimization of its parameters. Vestnik MGTU im.

29. N.E. Baumana. Ser. Priborostroenie. 5: 3-39. (In Russian)

30. Wickramasinghe N. K., Harada A., Miyazawa Y. (2012). Flight trajectory optimization for an efficient air transportation system. Proceedings of the 28th International Congress of the Aeronautical Sciences. 1-12

31. Yarlykov M. S. (1985). Statistical Theory of Radio Navigation. Moscow: Radio i svyaz'. 1985. 344 p. (In Russian)

32. Yarlykov M. S., Mironov M. A. (1993). Markov theory of estimation of random processes. Moscow:

33. Radio i svyaz'. 1993. 464 p. (In Russian)

34. Zayud Fadi, Polyakov V. V., Vorobiev V. V. (2009). Research of filtering methods in the problem of determining the coordinates of an aircraft in space. Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. Ser. Aeromekhanika i prochnost'. 138: 120-124. (In Russian)


Review

For citations:


Malisov N.P. ANALYSIS OF THE METHODOLOGICAL BASIS OF AIRCRAFT FLIGHT PATH CONTROL. Crede Experto: transport, society, education, language. 2024;(3):59-75. (In Russ.) https://doi.org/10.51955/2312-1327_2024_3_59

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)