Sensory and Intersensory Model of the Pilot – Aircraft System
https://doi.org/10.51955/2312-1327_2024_1_67
Abstract
The paper provides an overview of the components of the pilot model used to design the flight control system which focuses on the physiological aspects and aspects of manual control. The structure of a multi-element system is used which allows the authors to reveal the totality of interaction between the pilot and the aircraft during the implementation of manual control. Manual control is the most difficult process when performing an aircraft flight and requires a lot of experience and high pilot skills. The sensory and intersensory models of the pilot–aircraft system are considered. The application of these models requires knowledge of the mechanisms and processes that are directly involved in the development of the pilot's spatial orientation when controlling the aircraft manually. The development of a method and a mathematical model for the formation of spatial orientation skills is an urgent task of scientific research.
About the Authors
Gennady V. KovalenkoRussian Federation
Gennady V. Kovalenko, Doctor of Technical Science, Professor,
38, Street of Pilots, Saint-Petersburg, 196210.
Artem A. Fedorov
Russian Federation
Artem A. Fedorov, Postgraduate Student,
38, Street of Pilots, Saint-Petersburg, 196210.
Andrey V. Fedorov
Russian Federation
Andrey V. Fedorov, Candidate of Pedagogical Sciences, Associate Professor,
38, Street of Pilots, Saint-Petersburg, 196210.
References
1. Attitude Indicators in Bank Angle Determination: A Study of Errors. / O. Arinicheva, N. Lebedeva, A. Malishevskii, R. Arefyev // In: O. A. Gorbachev, X. Gao, B. Li (eds) Proceedings of 10th International Conference on Recent Advances in Civil Aviation. Lecture Notes in Mechanical Engineering. Singapore: Springer, 2023. DOI: 10.1007/978-981-19-3788-0_24.
2. Besogonov V. Development of a Multifactorial Flight Safety Level Assessment Methodology in the Russian Federation Civil Aviation / V. Besogonov, A. Kostylev, M. Ushakov // In: O. A. Gorbachev, X. Gao, B. Li (eds) Proceedings of 10th International Conference on Recent Advances in Civil Aviation. Lecture Notes in Mechanical Engineering. Singapore: Springer, 2023. DOI: 10.1007/978-981-19-3788-0_32.
3. Brain-Computer Interfaces / B. He, S. Gao, H. Yuan, J. R. Wolpaw // In: He, B. (eds) Neural Engineering. Boston, MA: Springer, 2013. DOI: 10.1007/978-1-4614-5227-0_2.
4. Emergency Performance Assessment in Air Traffic Control / A. Malishevskii, I. Krivoborsky, A. Khumorov, S. Vorobyov // In: O. A. Gorbachev, X. Gao, B. Li (eds) Proceedings of 10th International Conference on Recent Advances in Civil Aviation. Lecture Notes in Mechanical Engineering. Springer, Singapore. 2023. DOI: 10.1007/978-981-19-3788-0_29.
5. Erokhin V. Bi-criteria Aircraft Trajectory Optimization in Implementing the Area Navigation Concept // V. Erokhin, B. Lezhankin, T. Portnova // Int. J. Aeronaut. Space Sci. 2021. № 22. pp. 948–962. – DOI: 10.1007/s42405-021-00353-3.
6. Fernández C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system / C. Fernández, J. M. Goldberg // Journal of neurophysiology. 1971. №34(4). 661-75.
7. Hess R. A. Model for human use of motion cues in vehicular control // Journal of Guidance, Control, and Dynamics. 1990. № 13(3). pp. 476-482.
8. Hess R. A. Structural Model of the Adaptive Human Pilot // Journal of Guidance Control and Dynamics.. 1980. Vol. 3. pp. 416-423.
9. Hosman R. (1999). Pilot's perception in the control of aircraft motions / R. Hosman, H. Stassen // Control engineering practice. 1999. Vol. 7(11). pp. 1421–1428. DOI: 10.1016/s09670661(99)00111-2.
10. Markram H. The human brain project // Scientific American. 2012. Vol. 306(6). pp. 50–55. DOI: 10.1038/scientificamerican0612-50.
11. McRuer D. T. Mathematical Models of Human Pilot Behavior / D. T. McRuer, E. S. Krendel. London: AGARDograph AGARD-AG-188, Advisory Group for Aerospace Research & Development. 1974. 80 p.
12. Previc F. H. Spatial Disorientation in Aviation / F. H. Previc, W. R. Ercoline. Reston, Verginia: American Institute of Aeronautics and Astronautics Inc. 2004. 576 p.
13. Radar Systems of Air Transport. In: Theoretical Foundations of Radar Location and Radio Navigation / D. A. Akmaykin, E. A. Bolelov, A. I. Kozlov, B. V. Lezhankin, A. E. Svistunov, Y. G. Shatrakov // Springer Aerospace Technology. Singapore: Springer, 2021. DOI: 10.1007/978981-33-6514-8_11.
14. Seung S. Connectome: How the Brain’s Wiring Makes Us Who We Are. Boston, New York: Houghton Mifflin Harcourt, 2012. 384 p.
15. Telban R. An integrated model of human motion perception with visual-vestibular interaction / R. Telban F. Cardullo // in: AIAA Modeling and Simulation Technologies Conference and Exhibit. 2001. DOI: 10.2514/6.2001-4249.
16. Telban R. Investigation of mathematical models of otolith organs for human centered motion cueing algorithms / R. Telban, F. Cardullo L. Guo // in: AIAA Modeling and Simulation Technologies Conference and Exhibit. 2000. DOI: 10.2514/6.2000-4291.
17. Tsang P. S. Principles and Practice of Aviation Psychology / P. S. Tsang & M. A. Vidulich. CRC Press, 2002. 624 p. DOI: 10.1201/b12466.
Review
For citations:
Kovalenko G.V., Fedorov A.A., Fedorov A.V. Sensory and Intersensory Model of the Pilot – Aircraft System. Crede Experto: transport, society, education, language. 2024;(1):67-77. (In Russ.) https://doi.org/10.51955/2312-1327_2024_1_67
JATS XML
