Preview

Crede Experto: transport, society, education, language

Advanced search

COMPARATIVE ANALYSIS OF METHODS FOR DEVELOPING AVIATION ADAPTIVE SYSTEMS AND THE GENERALIZED MFTA/GDTA/CTA/CWA METHOD

https://doi.org/10.51955/2312-1327_2023_3_45

Abstract

The results of implementing automated technologies in various areas of the air transportation system demonstrate a positive impact of automation on the level of safety and efficiency of flights. However, this leads to a situation where the capabilities of modern technology significantly exceed the limited capabilities of a human operator: this fact indicates the necessity of applying a special approach directed at ensuring favorable interaction with humans in creating automated aviation systems. The paper is devoted to the methodology issues in the field of creating aviation adaptive systems (AS) and provides a comparative analysis of the most popular analytical methods for AS development. Additionally, a generalized method for conducting the MFTA/GDTA/CTA/CWA analysis is proposed, which is developed based on the methods of dismemberment, morphological analysis, and combination. The proposed generalized method involves the following stages: 1) analysis of goals and tasks; 2) analysis of subtasks and requirements for ensuring situational awareness; 3) cognitive analysis. As a result of these stages, the list of the main tasks of the system, a complete structural scheme of the developed AS and a cognitive analysis scheme, which contributes to determining the most probable errors of the operator for each critical stage of system functioning, are created. The advantages of the proposed generalized method lie in the fact that its implementation focuses on ensuring the operator’s situational awareness, and allows for the evaluation of risks caused by the external environment of the system functioning in order to determine the optimal level of adaptation and the way to support the crew members of the aircraft by the automation at each stage of their interaction.

About the Authors

G. V. Kovalenko
St. Petersburg State University of Civil Aviation named after Air Chief Marshal A.A. Novikov
Russian Federation

Gennadiy V. Kovalenko, Doctor of technical sciences, professor

38, street of Pilots Saint-Petersburg, 196210



I. A. Yadrov
St. Petersburg State University of Civil Aviation named after Air Chief Marshal A.A. Novikov
Russian Federation

Ilya A. Yadrov

38, street of Pilots Saint-Petersburg, 196210



References

1. Annette J., Duncan K. (1967). Task analysis and training design. Journal of Occupational Psychology. 41: 211-221.

2. Annette J., Stanton A. (1998). Research and developments in task analysis. Ergonomics. 41: 1529-1536.

3. Bernier M., Perrett K. (2014). Mission Function Task Analysis for Cyber Defence. Defence Research and Development Canada Ottawa, Ontario Canada. 2014. 20 p.

4. Bibby K. S. (1975). Man's role in control systems. IFAC Proceedings Volumes. 8(1): 664-683. DOI: 10.1016/S1474-6670(17)67612-2.

5. Billings C. E. (2018). Aviation automation: The search for a human-centered approach. CRC Press. 2018. 370 p.

6. Bolstad C. A., Riley J. M. (2002). Using goal directed task analysis with Army brigade officer teams. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles, CA: SAGE Publications. 46(3): 472-476. DOI: 10.1177/154193120204600354.

7. Brace W., Cheutet V. A framework to support requirements analysis in engineering design. Journal of Engineering Design. 23(12): 876-904. DOI: 10.1080/09544828.2011.636735.

8. Chipman S. F., Schraagen J. M., Shalin V. L. (2000). Introduction to cognitive task analysis. Cognitive task analysis. Psychology Press. 17-38.

9. Chow R., Kobierski B., Coates C. (2006). Applied comparison between hierarchical goal analysis and mission, function and task analysis. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles, CA: SAGE Publications. 50(3): 520-524. DOI: 10.1177/154193120605000365.

10. Clark R. E., Feldon D. F., Van Merriënboer J. J. G. (2008). Cognitive task analysis. Handbook of research on educational communications and technology. Routledge. 577-593.

11. Coffey J. W., Hoffman R. R. (2003). Knowledge modeling for the preservation of institutional memory. Journal of Knowledge Management. 7(4): 38-52. DOI: 10.1108/13673270310485613.

12. Crandall B., Klein G. A., Hoffman R. R. (2006). Working minds: A practitioner's guide to cognitive task analysis. Mit Press. 2006. 352 p.

13. Cummings M. L. (2017) Automation bias in intelligent time critical decision support systems.

14. Decision making in aviation. Routledge. 289-294. DOI: 10.2514/6.2004-6313.

15. Endsley M. R., Bolstad C. A., Jones D. G. (2003). Situation awareness oriented design: from user's cognitive requirements to creating effective supporting technologies. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles, CA: SAGE Publications. 47(3): 268-272. DOI: 10.1177/154193120304700304.

16. Endsley M. R., Kaber D. B. (1999). Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics. 42(3): 462-492. DOI: 10.1080/001401399185595.

17. Hou M., Banbury S., Burns C. (2014). Intelligent adaptive systems: An interaction-centered design perspective. CRC Press. 2014. 336 p.

18. Hou M., Kobierski R. D. (2005). Performance modeling of agent-aided operator-interface interaction for the control of multiple UAVs. 2005 IEEE International Conference on Systems, Man and Cybernetics. 2463-2468. DOI: 10.1109/ICSMC.2005.1571518.

19. Hou M., Kobierski R. D., Brown M. (2007). Intelligent adaptive interfaces for the control of multiple UAVs. Journal of Cognitive Engineering and Decision Making. 1(3): 327-362. DOI: 10.1518/155534307X255654.

20. Johnson C. M., Wiegmann D. A. (2015). VFR into IMC: Using simulation to improve weather-related decision-making. The International Journal of Aviation Psychology. 25(2): 63-76. DOI: 10.1080/10508414.2015.1026672.

21. Kaber D. B., Endsley M. R. (2004). The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theoretical issues in ergonomics science. 5(2): 113-153. DOI: 10.1080/1463922021000054335.

22. Kelly D., Efthymiou M. (2019). An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017. Journal of safety research. 69: 155-165. DOI:10.1016/j.jsr.2019.03.009.

23. Kotik M. A. (1978). The course on Engineering Psychology [Kurs inzhenernoy psihologii]. Tellin: Valgus. 1978. 374 p. (In Russian)

24. Kovalenko G. V., Mikhal’chevskiy Y. Y., Yadrov I. A. (2022). Unsatisfactory interaction between the elements of the intelligent adaptive system of the aircraft, as one of the main causes of the Ethiopian Airlines Boeing 737 MAX8 accident [Neudovletvoritel’noye vzaimodeystvie mezhdu elementami intellektual’noy adaptivnoy sistemi VS kak odna iz osnovnih prichin katastrofi Boeing 737 MAX8 aviakompanii Ethiopian Airlines]. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoy aviacii [St. Petersburg University of Civil Aviation’s Journal]. 4(37): 5-18. EDN UXHYBZ (In Russian)

25. Kovalenko G. V., Muravyev I. S., Nuzhdin S. G. (2017). Analysis of the state of air safety in modern aviation in the Russian Federation [Analiz sostoyaniya avariynosti sovremennoy aviacii v Rossiyskoy Federacii]. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoy aviacii [St. Petersburg University of Civil Aviation’s Journal]. 2(15): 26-35. EDN YSZLVZ. (In Russian)

26. Lamoureux T., Sartori J. (2007). Two methods for control task analysis. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Sage CA: Los Angeles, CA: SAGE Publications. 51(4): 293-297. DOI: 10.1177/154193120705100431.

27. Lee J. Y., Reigeluth C. M. (2003). Formative research on the heuristic task analysis process. Educational Technology Research and Development. 51(4): 5-17. DOI: 10.1007/BF02504541.

28. Militello L., Hutton R. (1998). Applied cognitive task analysis (ACTA): a practitioner’s toolkit for understanding cognitive task demands. Ergonomics. 41(11): 1618-1641. DOI: 10.1080/001401398186108.

29. Naikar N. (2006). Beyond interface design: Further applications of cognitive work analysis. International journal of industrial ergonomics. 36(5): 423-438. DOI: 10.1016/j.ergon.2006.01.006.

30. Onnasch L. (2014). Human performance consequences of stages and levels of automation: An integrated meta-analysis. Human factor. 56(3): 476-488. DOI: 10.1177/0018720813501549.

31. Parasuraman R., Mouloua M, Hilburn B. (1999). Adaptive aiding and adaptive task allocation enhance human-machine interaction. Automation technology and human performance: Current research and trends. 119-123.

32. Parаsurаmаn R., Sheridan T., Wickens C. (2000). А model for types and levels of human interaction with automation. IEEE Transactions on systems, man, and cybernetics, part A: Systems and Humans. 30(3): 286-297. DOI: 10.1109/3468.844354.

33. Ponomarenko V. A., Aivazian S. A. (2017). The meaning of 5th generation aviation [Smisl aviacii 5-go pokoleniia]. Moscow: Kogito-centr. 2017. 278 p.

34. Rasmussen J. (1983). Skills, rules and knowledge: signals, signs, and symbols, and other distinctions in human performance models. IEEE transactions on systems, man, and cybernetics. 13: 257-266. DOI: 10.1109/TSMC.1983.6313160.

35. Salas E., Maurino D., Curtis M. (2010). Human factors in aviation: an overview. Human factors in aviation: 3-19. DOI: 10.1016/B978-0-12-374518-7.00001-8.

36. Stanton N. A. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied ergonomics. 37(1): 55-79. DOI: 10.1016/j.apergo.2005.06.003.

37. Stanton N. A. (2016). Distributed situation awareness. Theoretical Issues in Ergonomics Science. 17(1): 1-7. DOI: 10.1080/1463922X.2015.1106615.

38. Stanton N. A., Jenkins D. P. (2017). Application of cognitive work analysis to system analysis and design. Cognitive Work Analysis. CRC Press. 3-72. DOI: 10.1201/9781315572536-2.

39. Stave A. M. (1977). The effects of cockpit environment on long-term pilot performance. Human Factors. 19(5): 503-514. DOI: 10.1177/001872087701900506.

40. Taylor R. M., Abdi S., Dru-Drury R. (2017). Cognitive cockpit systems: Information requirements analysis for pilot control of cockpit automation. Engineering Psychology and Cognitive Ergonomics Volume Five. Routledge: 81-88.

41. Tourki Y., Keisler J., Linkov I. (2013). Scenario analysis: a review of methods and applications for engineering and environmental systems. Environment Systems & Decisions. 33: 3-20. DOI: 10.1007/s10669-013-9437-6.

42. Tsibulevsky I. E. (1979) Erroneous reactions of the human operator [Oshibochnie reakcii cheloveka-operatora]. Moscow: Sov. Radio. 1979. 208 p. (In Russian)

43. Van Merriënboer J. J. G., Clark R. E., De Crook M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational technology research and development. 50(2): 39-61. DOI: 10.1007/BF02504993.

44. Vicente K. J. (1999). Cognitive Work Analysis: Toward safe, productive, and healthy computer-based work. CRC press. 1999. 416 p.

45. Wickens C. D. (2012). Automation and human performance. Engineering Psychology and Human Performance 4th Edition, Boston, MA: Pearson: 377-404.

46. Wiegmann D. A., Shappel S. A. (2017). A human error approach to aviation accident analysis: The human factors analysis and classification system. Routledge, 2017. 184 p.

47. Yadrov I. A. (2022). The algorithm for determining the optimal flight path for thunderstorm avoidance design [Razrabotka algoritma po opredeleniyu optimal’nogo sposoba obhoda grozovogo ochaga vozdushnim sudnom]. Luchshaya issledovatelskaya rabota 2022: Sbornik statey IV Mezhdunarodnogo nauchno-issledovatelskogo konkursa [Best research work 2022: Collection of articles of the IV International Research Competition]: 181-191. EDN IHTWCU. (In Russian)

48. Yadrov I. A. (2023). Intelligent adaptive decision support systems for flight crew decision-making pplication potential [Potencial primeneniia intellektualnih adaptivnih system podderzhki priniatiia reshenii v aviacii]. Molodezhnii issledovatelskii potencial 2023: Sbornik statei Mezhdunarodnogo nauchno-issledovatelskogo konkursa [Youth Research Potential 2023: Collection of articles of the International Research Competition]: 152-163. EDN JKDHLX. (In Russian)

49. Yeh Y. Y., Wickens C. D. (1988). Dissociation of performance and subjective measures of workload. Human factors. 30(1): 111-120. DOI: 10.1177/0018720888030001.


Review

For citations:


Kovalenko G.V., Yadrov I.A. COMPARATIVE ANALYSIS OF METHODS FOR DEVELOPING AVIATION ADAPTIVE SYSTEMS AND THE GENERALIZED MFTA/GDTA/CTA/CWA METHOD. Crede Experto: transport, society, education, language. 2023;(3):45-67. (In Russ.) https://doi.org/10.51955/2312-1327_2023_3_45

Views: 20

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)