Preview

Crede Experto: transport, society, education, language

Advanced search

Approaches to design and practice of unmanned aerial vehicles of the airplane type

https://doi.org/10.51955/2312-1327_2023_4_78

Abstract

Nowadays unmanned aviation has found wide application in many fields of human activity. Over the last two decades, such technology has moved from the category of military or experimental exotics to something applied and ubiquitous. Occupying more and more new spheres, unmanned aerial vehicles (UAVs) get all the new functions. For their implementation the designers often take quite bold decisions, which are rare in the «big» manned aviation. The article examines the current state of the civilian airplane-type UAVs industry in terms of their design features, as well as the specifics of their application in various sectors of the economy. The authors analyse the principles underlying the choice of this or that aerodynamic scheme of a UAVs on the process of its design. In the context of possible UAVs application scenarios the advantages and disadvantages as well as limitations of a particular UAVs airframe layout, applied engine unit and construction materials are under consideration. Based on a summary of the parameters analysed, it stands out a number of classification features, which can be used as a basis for a comprehensive classification of a wide range of unmanned civil aviation.

About the Authors

S. V. Skorobogatov
Moscow State Technical University of Civil Aviation (Irkutsk branch)
Russian Federation

Sergey V.  Skorobogatov, Candidate of Technical Sciences

3, Kommunarov Irkutsk, 664047



D. A. Buturov
Moscow State Technical University of Civil Aviation (Irkutsk branch)
Russian Federation

Dmitry A. Buturov

3, Kommunarov Irkutsk, 664047



References

1. Ahmad H., Tariq A., Shehzad A., Faheem M. S., Shafiq M., Rashid I. A., Khaliq Z. (2019). Stealth technology: Methods and composite materials—A review. Polymer Composites. 40(12): 4457- 4472.

2. Alsahlan A. A., Rahulan T. (2017). Aerofoil design for unmanned high-altitude aft-swept flying wings. Journal of Aerospace Technology and Management. 9: 335-345.

3. Begaliev E. N. (2019). On the prospects for the use of unmanned aerial vehicles during the production of certain investigative actions. Bulletin of the East-Siberian Institute of the Ministry of Internal Affairs of Russia. 2(89): 163-172. (in Russian)

4. Békési B., Makkay I., Palik M., Bottyán Z., Dunai P., Halászné T. A., Wührl T. (2013). Pilóta nélküli repülés profiknak és amatőröknek. Nemzeti Közszolgálati Egyetem, 2013. 323 p.

5. Bikkannavar K., Scholz D. (2016). Investigation and design of a C-Wing passenger aircraft. INCAS Bulletin. 8(2): 25.

6. Breus N. L., Tokarev A. E., Tokarev A. A. (2022). Technologies of unmanned piloting in the control of construction and operation of linear objects of capital construction. Bulletin of Eurasian science. 14(3): 14. (in Russian)

7. Chu L., Gu F., Du X., Zhang M., He Y., Chen C. (2023). Aerodynamic configuration and control optimization for a novel horizontal-rope shipborne recovery fixed-wing UAV system. Aerospace Science and Technology. 137: 108253.

8. Clark R. M. (2000). Uninhabited combat aerial vehicles: airpower by the people, for the people, but not with the people. Alabama: Air University Press. 2000. 89 p.

9. Evtodieva M. G., Tselitsky S. V. (2019). Unmanned aerial vehicles for military use: trends in development and production. Ways to Peace and Security. 2(57): 104-111. (in Russian)

10. Fetisov V. S., Neugodnikova L. M., Adamovsky V. V., Krasnoperov R. A. (2014). Unmanned aviation: terminology, classification, current state. Ufa: PHOTON, 2014. 217 p. (in Russian)

11. Frederick G., Kaepp G. A., Kudelko C. M., Schuster P. J., Domas F., Haardt U. G., Lenz W. (1995). Optimization of expanded polypropylene foam coring to improve bumper foam core energy absorbing capability. SAE transactions. 394-400.

12. Ge C., Ren Q., Wang S., Zheng W., Zhai W., Park C. B. (2017). Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chemical Engineering Science. 174: 337-346.

13. Glazyrin A. B., Basyrov A. A., Sultanov A. I., Zaripov T. F., Nurgaleev I. I. (2017). Technological and electrical conductive properties of polymer compositions based on butadiene-styrene block copolymer. Dostizhenie nauki i obrazovanie. 1(14): 14-17. (in Russian)

14. Goh G. D., Agarwala S., Goh G. L., Dikshit V., Sing S. L., Yeong W. Y. (2017). Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology. 63: 140-151.

15. Gonzalo J., López D., Domínguez D., García A., Escapa A. (2018). On the capabilities and limitations of high altitude pseudo-satellites. Progress in Aerospace Sciences. 98: 37-56.

16. Hairi S. M. F. B. S., Saleh S. J. M. B. M., Ariffin A. H., Omar Z. B. (2023). A Review on Composite Aerostructure Development for UAV Application. Green Hybrid Composite in Engineering and Non-Engineering Applications. 137-157.

17. Ivanov K. M., Kupchinsky A. B., Ovdin M. E., Petrov E. A., Syrovatsky A. A., Shabanov D. E. (2022). Experience of using UAV in ecological studies of the Baikal seal (pusa sibirica gm.) population during the period of the beginning of the formation of coastal rookeries. International Research Journal. 8(122): 5. (in Russian)

18. Klimenko N. N. (2018). First Operational Pseudo-satellites for Military and Civil Users. Aerospace Sphere Journal. (3): 64-77.

19. Konyukhov I. K. (2018). Analysis of the application of the aerodynamic scheme «flying wing» on unmanned aerial vehicles of the class «air-surface». Proceedings of MAI. 99: 4. (in Russian)

20. Koptev S. V., Skudneva O. V. (2018). On the possibilities of using unmanned aerial vehicles in forestry practice. Izvestia vysshee obrazovaniya. Forestry journal. 1(361): 130-138. (in Russian)

21. Kotarev S. N., Kotareva O. V., Aleksandrov A. N. (2017). The use of unmanned aerial vehicles to ensure security at transportation facilities. Vestnik of the East-Siberian Institute of the Ministry of Internal Affairs of Russia. 4(83): 199-204. (in Russian)

22. Kurukularachchi P. L., Munasinghe S. R., De Silva H. R. P. S. (2016). Stability analysis for a twin boom H-tail Medium Scale UAV through simulated dynamic model. In 2016 Moratuwa Engineering Research Conference (MERCon). 415-420.

23. Li J., Zhang M., Tay C. M. J., Liu N., Cui Y., Chew S. C., Khoo B. C. (2022). Low-Reynoldsnumber airfoil design optimization using deep-learning-based tailored airfoil modes. Aerospace Science and Technology. 121: 107309.

24. Liang L., Lin Y., Huang Y., Chen M. (2022). Broadband stealth composite metastructure with high penetration protection. Composites Part A: Applied Science and Manufacturing. 160: 107069.

25. Makarenko S. I., Timoshenko A. V., Vasilchenko A. S. (2020). Analysis of means and methods of counteraction to unmanned aerial vehicles. Part 1. Unmanned aerial vehicle as an object of detection and defeat. Control Systems, Communications and Security. 1: 109-146. (in Russian)

26. McNabb M. (2016). Changing Forecasts: The Drone Industry Surprise. Available at: https://dronelife.com/2016/04/08/comparing-drone-industry-forecasts/ (accessed 10 November 2023).

27. Merzlikin V. Е. (1982). Radio-controlled models of gliders. Ripol Classic. 1982. 160 p. (in Russian) Naveen R. (2018). Aerodynamic Analysis of C-Wing Aircraft. INCAS Bulletin. 10(3): 157-165.

28. Nugroho G., Hutagaol Y. D., Zuliardiansyah G. (2022). Aerodynamic Performance Analysis of VTOL Arm Configurations of a VTOL Plane UAV Using a Computational Fluid Dynamics Simulation. Drones. 6(12): 392.

29. Nugroho G., Zuliardiansyah G., Rasyiddin A. A. (2022). Performance Analysis of Empennage Configurations on a Surveillance and Monitoring Mission of a VTOL-Plane UAV Using a Computational Fluid Dynamics Simulation. Aerospace. 9(4): 208.

30. Ovchinnikova N. G., Medvedkov D. A. (2019). Application of unmanned aerial vehicles for land management, cadastre and urban planning. Economics and ecology of territorial formations. 1: 98- 108. (in Russian)

31. Panagiotou P., Yakinthos K. (2020). Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerospace Science and Technology. 99: 105575.

32. Panayotov H., Penchev S., Kolibarov D. (2017). Experimental study of canard UAV aerodynamics. MATEC Web of Conferences. EDP Sciences. 133: 01002.

33. Panta A., Mohamed A., Marino M., Watkins S., Fisher A. (2018). Unconventional control solutions for small fixed wing unmanned aircraft. Progress in Aerospace Sciences. 102: 122-135.

34. Pavlenko A. M., Zanin B. Yu., Katasonov M. M. (2015). Investigations of a flying wing model streamline at natural Reynolds numbers. Bulletin of Novosibirsk State University. Series: Physics. 10(3): 19-25. (in Russian)

35. Petrov G. F. (2000). Hydroplanes and wing-in-surface-effect vehicles of Russia 1910-1999. RUSAVIA, 2000. 243 p. (in Russian)

36. Petrova G. N., Larionov S. A., Platonov M. M., Perfilova D. N. (2017). Thermoplastic materials of new generation for aviation. Aviation materials and technologies. S: 420-436. (in Russian)

37. Sarhidai G. Robotrepülőgépek. Budapest: Zrínyi Katonai Kiadó, 1986. 63 p.

38. Septiyana A., Ramadiansyah M. L., Jayanti E. B., Hidayat K., Rizaldi A., Atmasari N., Suseno P. A. P. (2021). Static stability analysis on twin tail boom UAV using numerical method. AIP Conference Proceedings. AIP Publishing. 2366(1): 030002.

39. Shaker S. M., Wise A. R. (1988). War without men. Robots on the future battlefield. Washington: Pergammon-Brassey’s, 1988. 196 p.

40. Shen B., Liu H., Lv S. (2023). Topology optimization of UAV structure based on homogenization of honeycomb core. AIP Advances. 13(5): 055223

41. Skinner S. N., Zare-Behtash H. (2018). Study of a C-wing configuration for passive drag and load alleviation. Journal of Fluids and Structures. 78: 175-196.

42. Skudneva O. V. (2014). Unmanned aerial vehicles in the system of forestry in Russia. Izvestiya vysshee obrazovaniye. Lesnoy zhurnal. 6(342): 150-154. (in Russian)

43. Skudneva O. V., Koptev S. V., Ivantsov S. V. (2020). Navigation and piloting system of an unmanned aerial vehicle for monitoring forest fires. Izvestia vysshee obrazovaniya. Forest journal. 6(378): 194-203. (in Russian)

44. Sukonnikov O. G., Neretin А. A., Guriev V. A. (2017). Analysis of the applicability of UAVs in geodetic control of roads under construction and in operation. CAD and GIS of highways. 2(9): 44- 48. (in Russian)

45. Sun J., Wang Y., Zhou P., Wang M., Kang R., Dong Z. (2023). Equivalent mechanical model of resin-coated aramid paper of Nomex honeycomb. International Journal of Mechanical Sciences. 240: 107935.

46. Suresh C., Ramesh K., Paramaguru V. (2015). Aerodynamic performance analysis of a non-planar C-wing using CFD. Aerospace Science and Technology. 40: 56-61.

47. Szczepaniak P., Jóźko M. (2017). Research of pneumatic distributors for launcher of unmanned aerial vehicle (UAV). Journal of KONBiN. 43(1): 249-276.

48. Van Wyen A. O. Naval Aviation in World War I. Washington, D.C. : Chief of Naval Operations, 1969. 91 p.

49. Venturi F., Taylor R. (2023). Additive Manufacturing in the Context of Repeatability and Reliability. Journal of Materials Engineering and Performance. 1-21

50. Vozhdaev V. V., Teperin L. L. (2018). Characteristics of radar conspicuity of aircraft. Moscow: Fizmatit, 2018. 376 p. (in Russian)

51. Vtoruj V. F., Vtoruj S. V. (2017). Prospects of environmental monitoring of agricultural facilities using unmanned aerial vehicles. AgroEcoEngineering. 92: 158-166. (in Russian)

52. Wang A., Wang A. R. (2017). Conceptual Design of a QuadPlane Hybrid Unmanned Aerial Vehicle. In 2017 AIAA Student Conference Region VII-AU. 6-11.

53. Xu H., Kong D., Qian Y., Tang X. (2022). Motor noise reduction of unmanned aerial vehicles. Applied Acoustics. 198: 108979.

54. Zafirov D., Panayotov H. (2015). Joined-wing test bed UAV. CEAS Aeronautical Journal. 6(1): 137-147. Zaharia S. M., Pascariu I. S., Chicos L. A., Buican G. R., Pop M. A., Lancea C., Stamate V. M. (2023).

55. Material Extrusion Additive Manufacturing of the Composite UAV Used for Search-andRescue Missions. Drones. 7(10): 602.

56. Zhao W., Jia R., Li X., Zhao J., Xie Z. (2022). Flatwise compression behavior of composite Nomex® honeycomb sandwich structure. Journal of Sandwich Structures & Materials. 24(2): 1169-1188.

57. Zhu S., Wang Y., Zhou L., Yi W., Hu L., Liu J., Li H. (2023). Experimental investigation on mechanical behaviors of composite sandwich panels with a hybrid facesheet. Polymer Composites. 44(6).: 3196-3208.

58. Zubarev Y. N., Fomin D. S., Chashchin A. N., Zabolotnova M. V. (2019). Use of unmanned aerial vehicles in agriculture. Vestnik of Perm Federal Research Center. 2: 47-51. (in Russian)


Review

For citations:


Skorobogatov S.V., Buturov D.A. Approaches to design and practice of unmanned aerial vehicles of the airplane type. Crede Experto: transport, society, education, language. 2023;(4):78-115. (In Russ.) https://doi.org/10.51955/2312-1327_2023_4_78

Views: 9

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)