Preview

Crede Experto: transport, society, education, language

Advanced search

SPATIAL ORIENTATION AND FLIGHT IMAGE: MODERN APPROACHES TO PILOT TRAINING

https://doi.org/10.51955/2312-1327_2024_4_78

Abstract

The article examines the key aspects that ensure effective piloting, such as spatial orientation and flight image. Modern methods of pilot training including technological solutions and cognitive training are described. Emphasis is placed on the importance of an integrated approach to skill development to enhance flight safety and efficiency. The practical significance of the work lies in the need to constantly update and adapt pilot training programs in light of technological progress and changes in the aviation industry, which will contribute to the creation of a safer and more reliable air traffic control system of the future.

About the Author

A. A. Fedorov
St. Petersburg State University of Civil Aviation named after Air Chief Marshal A.A. Novikov
Russian Federation

Artem A. Fedorov, Postgraduate student

38, Pilotov Street Saint-Petersburg, 196210



References

1. Aleshechkin A. M. Trajectory optimization of dynamically controlled objects in INS. GNSS integrated navigation system / A. M. Aleshechkin, V. V. Erokhin // Gyroscopy and Navigation. 2017. №8 (1). P. 15-23. DOI 10.1134/S2075108716040027. EDN YVIROP.

2. Aviation History: Early Training // Aviation Journal. 2003. P. 45-52.

3. Benson T. F. A pilot's guide to understanding and mitigating disorientation in flight // FAA Publication. 1996. P. 12-36.

4. Boyd S. Convex Optimization / S. Boyd, L. Vandenberghe // Cambridge University Press. 2004. P. 113-130.

5. Butcher J. C. Numerical Methods for Ordinary Differential Equations // Wiley. 2008. P. 215-240.

6. Carpenter B. Functional Training for Aviation Professionals // Aviation Supplies & Academics. 2001. P. 54-78.

7. Carroll J. B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies // Cambridge University Press. 1993. P. 50-79.

8. Dixon J. C. Dynamics of rigid-body motion and control in aerospace and robotics // Wiley. 2009. P. 48-76.

9. Endsley M. R. Toward a theory of situation awareness in dynamic systems // Human Factors. 1995. №37(1). P. 32–64.

10. Erokhin V. Bi-criteria Aircraft Trajectory Optimization in Implementing the Area Navigation Concept / V. Erokhin, B. Lezhankin, T. Portnova // International Journal of Aeronautical and Space Sciences. 2021. №22(4). P. 948-962. DOI 10.1007/s42405-021-00353-3. EDN UQNHOD.

11. Eysenck M. W. Cognitive Psychology: A Student's Handbook / M. W. Eysenck, M. T. Keane // Psychology Press. 2015. P. 305-340.

12. Gazzaniga M. S. Cognitive Neuroscience: The Biology of the Mind / M. S. Gazzaniga, R. B. Ivry, G. R. Mangun // W. W. Norton & Company. 2018. P. 191-214.

13. Hastie T. The Elements of Statistical Learning / T. Hastie, R. Tibshirani, J. Friedmanet // Springer. 2009. P. 211-235.

14. Izard C.E. Emotion, Cognition, and Behavior // Springer. 1993. P. 201-225.

15. Katsuhiko O. Modern Control Engineering // Prentice Hall. 2010. P. 343-367.

16. Kraiger K. Simulation-Based Training in Aviation and Aerospace // Taylor & Francis. 2008. P. 134-157.

17. Luecken L. J. Handbook of Physiological Research Methods in Health Psychology / L. J. Luecken, L. Gallo // Sage Publications. 2008. P. 73-98.

18. Luecken L. J. The Psychophysiology of Stress / L. J. Luecken, K. A. Orchowski // Springer. 2010. P. 165-190.

19. McEwen B. S. Stress and the Brain: Nervous System Reactions to Stress and Their Modulation // Neuropsychopharmacology Journal. 2007. №22(2). P. 108-124.

20. Purves D. Principles of Cognitive Neuroscience // Sinauer Associates. 2013. P. 132-160.

21. Rudy J. W. Neurobiology of Learning and Memory // Sinauer Associates. 2008. P. 95-115.

22. Selye H. The Stress of Life. New York: McGraw-Hill, 1976. P. 234-259.

23. Shannon R. E. Systems Simulation: The Art and Science // Prentice Hall. 2005. P. 142-166.

24. Stevens B.L. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems / B. L. Stevens, F. L. Lewis, E. N. Johnson // John Wiley & Sons. 2015. P. 67-89.

25. Styles E. The Psychology of Attention // Psychology Press. 2006. P. 92-110.

26. Sutton R. S. Reinforcement Learning: An Introduction / R. S. Sutton, A. G. Barto // MIT Press. 2018. P. 88-112.

27. Taylor P. The Evolution of Control Theory in Aerospace Engineering // Journal of Aerospace Innovations. 2021. P. 100-115.

28. The use of immersive virtual reality in the learning sciences: Digital transformations of teachers, students, and social context / J. N. Bailenson, N. Yee, J. Blascovich, A. C. Beall, N. Lundblad, M. Jin // Journal of the Learning Sciences. 2008. №17(1). P. 102-141.

29. Theoretical foundations of radar location and radio navigation / D. A. Akmaykin, E. A. Bolelov, A. I. Kozlov [et al.] // Springer Aerospace Technology. 2021. P. 1-325.

30. Wickens C. D. Applied Attention Theory / C. D. Wickens, J. S. McCarley // CRC Press. 2008. P. 315-340.

31. Wie B. Space Vehicle Dynamics and Control // Aircraft Engineering and Aerospace Technology. Education Series. 1998. №70(5). P. 23-45.

32. Wiegmann D. A. A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System / D. A. Wiegmann, S. A. Shappell // Ashgate Publishing. 2017. P. 243-268.

33. Young L. R. Spatial orientation and motion sickness / L. R. Young, C. M. Oman, D. M. Merfeld // Springer. 2007. P. 152-176.


Review

For citations:


Fedorov A.A. SPATIAL ORIENTATION AND FLIGHT IMAGE: MODERN APPROACHES TO PILOT TRAINING. Crede Experto: transport, society, education, language. 2024;(4):78-92. (In Russ.) https://doi.org/10.51955/2312-1327_2024_4_78

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)