Detection of critical links in spatial-temporal routes based on complex networks
https://doi.org/10.51955/2312-1327_2025_3_131
Abstract
This paper presents an enhanced method for detecting critical edges in spatial-temporal route networks based on complex network analysis. Unlike previous models, the proposed approach accounts not only for the topological characteristics of routes but also for their dynamic variability through a composite weight that includes the average travel speed and its variance. Additional metrics, such as load centrality and robustness of connectivity, are introduced. Critical edges are automatically identified via percolation analysis, without the need for manual threshold adjustment. For criticality prediction, a gradient boosting model is employed, using a set of structural and temporal features. The proposed approach ensures more accurate, reproducible, and adaptive identification of vulnerable segments in route networks and can be applied in real time to support air traffic management.
About the Author
G. A. GasparyanRussian Federation
Grigory A. Gasparyan, postgraduate student
20, Kronshtadtsky blvd, Moscow, 125493
References
1. Aeronautical Information Publication & Amendments (2020). Available at: https://www.caas.gov.sg/docs/default-source/pdf/aip-singapore-31-dec-20.pdf (accessed 08 February 2021).
2. Eshmuradov D. E., Saifullaeva N. A. (2020). Issues of optimizing the distribution of airspace sector load. Bulletin of Tashkent State Technical University. (3): 45-52. EDN ZFSEAG.
3. Chen D., Hu M., Zhang H., Yin J., Han K. (2017). A network-based dynamic air traffic flow model for en route airspace system traffic flow optimization. Transportation Research Part E: Logistics and Transportation Review. 106 (C): 1-19. DOI 10.1016/j.tre.2017.07.009.
4. Ha T., García A., Lavandier J., Chaimatanan S., Delahaye D. (2022). Air traffic complexity map based on linear dynamical systems. Aerospace. 9 (5): 230. DOI 10.3390/aerospace9050230.
5. Huang X., Hu S., Wang W., Kaparias I., Zhong S., Na X., Bell M.G.H., Lee D.-H. (2023). Identifying critical links in urban transportation networks based on spatio-temporal dependency learning. IEEE Transactions on Intelligent Transportation Systems. 24(6): 6632-6646. DOI 10.1109/TITS.2022.3339507.
6. Guo Y., You C., Yin C., Zhang R. (2020). UAV Trajectory and Communication Co-design: Flexible Path Discretization and Path Compression. IEEE Journal on Selected Areas in Communications, Special Issue on UAV Communications in 5G and beyond networks. 39(11): 3506-3523. DOI 10.1109/JSAC.2021.3088690.
7. IATA. European Air Traffic Control Delays Loom Over Summer Air Travel (2018). Available at: https://www.iata.org/pressroom/pr/Pages/2018-07-18-01.aspx (accessed 28 January 2023).
8. Kalpana R., Sivakumar A., Sundar S. (2023). Analyzing transportation network vulnerability to critical-link attacks through topology changes and traffic volume assessment. Applied Sciences. 13(1): 221. DOI 10.3390/app15084099.
9. Kong W., Guo Z., Liu Y. (2024). Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence. 38(8): 8627-8635. DOI 10.1609/aaai.v38i8.28707.
10. Li D., Fu B., Wang Y., Lu G., Berezin Y., Stanley H. E., Havlin S. (2015). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences of the United States of America. 112 (3): 669-672. DOI https://doi.org/10.1073/pnas.1419185112.
11. Li M. Z., Gopalakrishnan K., Balakrishnan H., Shin S. (2021). Dynamics of disruption and recovery in air transportation networks. CEAS Aeronautical Journal. .13(12): 1-11. DOI 10.1007/s13272-021-00521-x.
12. Mahabadi Z., Varga L., Dolan T. (2021). Network properties for robust multilayer infrastructure systems: A percolation theory review. IEEE Access. 9: 135755-135773. DOI 10.1109/ACCESS.2021.3116868.
13. Mazzarisi P., Zaoli S., Lillo F., Delgado L., Gurtner G. (2019). New centrality and causality metrics assessing air traffic network interactions. Journal of Air Transport Management. 85. Article 101801. DOI: 10.1016/j.jairtraman.2020.101801.
14. Nguyen N. N. K., Nechaev V. N., Malygin V. B. (2025). Mathematical model and A-Star algorithm for optimizing air traffic control routing in area control center airspace. Crede Experto: Transport, Society, Education, Language. 1: 12-22. DOI 10.51955/2312-1327_2025_1_64 EDN XGLVST.
15. Pechenezhsky V. K., Chuvikovskaya E. K. (2023). Features of airspace planning organization in the Russian Federation: the case of the Moscow airspace. Scientific Bulletin of MSTU CA. 26 (6): 47-57. EDN VJOFJZ.
16. Ren G. (2021). Robustness Analysis of Air Route Network Based on Topology Potential and Relative Entropy Methods. Journal of Advanced Transportation. 1-11. DOI 10.1155/2021/5527423.
17. Scala P., Mota M., Wu C.-L., Delahaye D. (2021). An optimization-simulation closed-loop feedback framework for modeling the airport capacity management problem under uncertainty. Transportation Research Part C: Emerging Technologies. 124. Article 102937. DOI 10.1016/j.trc.2020.102937.
18. Sherali H. D., Smith J. C., Trani A. A., Sale S. (2000). National airspace sector occupancy and conflict analysis models for evaluating scenarios under the free-flight paradigm. Transportation Science. 34 (4): 321-339. DOI 10.1287/trsc.34.4.321.12326.
19. Sun Y., Wang S., Xu X., Shen L. (2024). Identification of critical links based on the optimal reliable path in stochastic traffic networks. PLoS ONE. 19(1): e0298173. DOI 10.1371/journal.pone.0301272.
20. Takhtfiroozeh H., Golias M., Mishra S. (2021). Topological-based measures with flow attributes to identify critical links in a transportation network. Transportation Research Record. 2675(11): 46-57. DOI 10.1177/03611981211013039.
21. Tian X., Liu Z., Chen Z. (2021). Identification of critical links in urban road networks considering cascading failures. Mathematical Problems in Engineering. Article ID 6656837. DOI 10.1155/2021/9994347.
22. Wang Y., Li M. Z., Gopalakrishnan K., Liu T. (2022). Timescales of delay propagation in airport networks. Transportation Research Part E: Logistics and Transportation Review. 161. Article 102687. DOI 10.1016/j.tre.2022.102687.
23. Zheng Y., Li C., Wang Y., Qi Y., Li Z. (2019). Multi-objective network structure optimization method based on waypoint layout. Journal of Aeronautics, Beijing University of Aeronautics and Astronautics. 45(1). 1-9. DOI 10.13700/j.bh.1001-5965.2018.0157.
24. Zhou S., Shi Y., Chen L., Wang T. (2021). Optimal schedule recovery for the aircraft gate assignment with constrained resources. Computers & Industrial Engineering. 156: 107682. DOI: 10.1016/j.cie.2021.107682.
Review
For citations:
Gasparyan G.A. Detection of critical links in spatial-temporal routes based on complex networks. Crede Experto: transport, society, education, language. 2025;(3):131-161. (In Russ.) https://doi.org/10.51955/2312-1327_2025_3_131
JATS XML
