Preview

Crede Experto: transport, society, education, language

Advanced search

Control of the Flight Path of an Unmanned Aerial Vehicle with Different Configurations of Navigation Information Sources

https://doi.org/10.51955/2312-1327_2024_1_113

Abstract

In real conditions of application for high-precision positioning and trajectory control of unmanned aerial vehicles (UAVs) when flying along a route, insufficient noise immunity and operating accuracy of satellite navigation system receivers are manifested. In this regard, it is relevant to study possible methods and means of providing high-precision navigation definitions based on complex processing of signals from various sources of navigation information when solving the problem of displaying a UAV in a terminal set.

The article presents the results of developing a UAV trajectory control algorithm based on methods of statistical optimal control theory, the implementation of which will improve the accuracy of maintaining a given flight route. The characteristics for analyzing errors in maintaining the flight path are considered.

The results of modeling and research of the characteristics of the trajectory control algorithm for various configurations of navigation information sources (NIS) are presented and the dependence of the accuracy of maintaining a given UAV flight route on errors in estimating navigation parameters is shown.

About the Authors

Boris V. Lezhankin
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Boris V. Lezhankin, Candidate of Technical Sciences,

3, Kommunarov str., Irkutsk, 664047.



Vyacheslav V. Erokhin
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Vyacheslav V. Erokhin, Doctor of Technical Science,

3, Kommunarov str., Irkutsk, 664047.



Nikolay P. Malisov
Moscow State Technical University of Civil Aviation (Irkutsk Branch)
Russian Federation

Nikolay P. Malisov, Senior Lecturer,

3, Kommunarov str., Irkutsk, 664047.



References

1. Arefyev R. O., Turintsev S. V., Turintseva M. S. (2021). The use of noise-resistant coding in the processing of messages from a local correction station. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii : sbornik trudov X Mezhdunarodnoj nauchno-prakticheskoj konferencii. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya «Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii». pp. 22-32. EDN YMDPPC. (in Russian)

2. Erokhin V. V., Lezhankin B. V., Bolelov E. A. (2023). Estimation of UAV trajectory parameters with different configuration of navigation information sources. Uspekhi sovremennoj radioelektroniki-Peterburg: Koncern "Central'nyj nauchno-issledovatel'skij institut "Elektropribor". 77(6): 35-49. DOI: 10.18127/j20700784-202306-04. EDN MVHGGW. (in Russian)

3. Goncharenko V. I., Lebedev G. N., Mikhaylin D. A. (2019). The task of operational twodimensional routing of a group flight of unmanned aerial vehicles. Izvestiya Rossijskoj akademii nauk. Teoriya i sistemy upravleniya. 1: 153-165. DOI: 10.1134/S0002338819010074. EDN YWYDVB. (in Russian)

4. Huttunen M. (2019). Civil unmanned aircraft systems and security: The European approach. J Transp Secur. 12: 83–101. DOI: 10.1007/s12198-019-00203-0.

5. Maryukhnenko V. S., Mukhopad Yu. F., Antipin E. I., Turintsev S. V. (2012). Evaluation of the effectiveness of a typical aviation integrated navigation system. Polet. Obshcherossijskij nauchnotekhnicheskij zhurnal. 2: 25-35. EDN OYXKML. (in Russian)

6. Merkulov V. I., Verba V. S., Ilchuk A. R. (2018). Automatic tracking of targets in the radar of integrated aviation complexes. Theoretical foundations. Radar as part of an integrated aviation complex. Moscow: Radiotekhnika, 2018. 320 p. (in Russian)

7. Mezhetov M. A., Grigorieva E. S., Nikitich P. T. (2020). Prospects for using the LDACS data transmission system for air traffic control tasks Sbornik trudov IX Mezhdunarodnoj nauchnoprakticheskoj konferencii, Irkutsk, 15–22 oktyabrya 2020 goda. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya "Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii". pp. 176-182. EDN GFCDDC. (in Russian)

8. Mezhetov M. A., Tikhova A. I., Vakhrusheva U. S., Fedorov A. V. (2021). Application of LoRa technology in unmanned aircraft systems. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii : sbornik trudov X Mezhdunarodnoj nauchno-prakticheskoj konferencii. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya «Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii». 2: 180-185. EDN UZUCLT. (in Russian)

9. Peshekhonov V. G. (2022). High-precision navigation without using information from global navigation satellite systems. Giroskopiya i navigaciya. 1(116): 3-11. DOI 10.17285/0869-7035.0084. EDN WRZXAM. (in Russian)

10. Serebrennikov E. A., Turintsev S. V. (2017). Software model of the VDL digital communication line of mode 2. Aktual'nye problemy aviacii i kosmonavtiki. 13: 119-121. (in Russian)

11. Shestakov I. N., Kryzhanovsky G. A. (2014). Expansion of the SRNS field with the help of AZNV ground stations. Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 210: 114-117. EDN TBUBMV. (in Russian)

12. Skrypnik O. N., Arefyev R. O. (2020). Optimization of the trajectory of a mobile pseudo-satellite to improve the accuracy of the integrated GLONASS navigation and time field. Sovremennye naukoemkie tekhnologii. 2: 51-58. DOI 10.17513/snt.37914. EDN KZCVNA. (in Russian)

13. Skrypnik O. N., Arefyev R. O., Arefyeva N. G. (2016). Calculation of the characteristics of the navigation session of the GLONASS system. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM № 2016617951 Rossijskaya Federaciya. EDN JODKFV. (in Russian)

14. Skrypnik O. N., Lezhankin B. V., Mironov B. M., Malisov N. P. (2008). Formation of a radar map of the underlying surface by filtering random fields. Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 133: 60-66. EDN KVVEYT. (in Russian)

15. Voronov E. M., Karpunin A. A. (2011). 77-30569/280873 Ensuring trajectory safety in the task of overflying a dynamic circular zone. Elektronnoe nauchno-tekhnicheskoe izdanie «Nauka i obrazovanie». 12: 5. (in Russian)

16. Yemelyantsev G. I., Stepanov A. P. (2016). Integrated inertial-satellite orientation and navigation systems. Saint Petersburg: Koncern «Central'nyj nauchno-issledovatel'skij institut «Elektropribor». 2016. 394 p. EDN XSSBEF. (in Russian)


Review

For citations:


Lezhankin B.V., Erokhin V.V., Malisov N.P. Control of the Flight Path of an Unmanned Aerial Vehicle with Different Configurations of Navigation Information Sources. Crede Experto: transport, society, education, language. 2024;(1):113-127. (In Russ.) https://doi.org/10.51955/2312-1327_2024_1_113

Views: 9

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)