Preview

Crede Experto: transport, society, education, language

Advanced search

On the experimental setup for approbation of an algorithm for processing diagnostic parameters of aircraft Gas Turbine Engine based on multilayer neural networks

https://doi.org/10.51955/2312-1327_2025_3_71

Abstract

The paper presents experimentally substantiated tabular data for hyperparameter tuning of multilayer neural networks in aviation gas turbine engine diagnostics. The authors propose seven original algorithms for adaptive training parameter tuning, including methods for dynamic adaptation of the learning rate, strategies for changing the network architecture depending on the engine operating mode, and adaptive approaches to regularization. The parameter ranges cover values from 10-5 to 103, which ensures practical applicability for various architectures and data types. The scientific novelty lies in the creation of adaptive algorithms that take into account the specifics of the diagnostic parameters of gas turbine engine components and their time dynamics.

About the Authors

H. Huseynov
Moscow State Technical University of Civil Aviation
Russian Federation

Huseyn Huseynov, Postgraduate student

20, Kronshtadtsky blvd, Moscow, 125493



O. F. Mashoshin
Moscow State Technical University of Civil Aviation
Russian Federation

Oleg F. Mashoshin, Doctor of Technical Sciences, Professor

20, Kronshtadtsky blvd, Moscow, 125493



References

1. Bai M., Liu J., Ma Y., Zhao X., Long Z., Yu D. (2021). Long short-term memory network-based normal pattern group for fault detection of three-shaft marine gas turbine. Energies. 14(1): 13. DOI 10.3390/en14010013.

2. Bischl B., Binder M., Lang M., Pielok T., Richter J., Coors S., Thomas J., Ullmann T., Becker M., Boulesteix A.-L., Deng D., Lindauer M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 13(2). DOI 10.1002/widm.1484.

3. Cruz Y. J., Castaño F., Haber R. E., Yarens J. Cruz, Fernando Castaño, Rodolfo E. Haber, Villalonga A., Ejsmont K., Gladysz B., Flores Á., Alemany P. (2024). Self-reconfiguration for smart manufacturing based on artificial intelligence: A review and case study. Artificial Intelligence in Manufacturing. Springer. 121-144. DOI 10.1007/978-3-031-46452-2-8.

4. Hashmi M. B., Mansouri M., Fentaye A. D., Ahsan S., Kyprianidis K. (2024). An artificial neural network-based fault diagnostics approach for hydrogen-fueled micro gas turbines. Energies. 17(3): 719. DOI 10.3390/en17030719.

5. He X., Zhao K., Chu X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems. 212: 106622. DOI 10.1016/j.knosys.2020.106622.

6. Irani F. N., Soleimani M., Yadegar M., Meskin N. (2024). Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator. Applied Energy. 365: 123256. DOI 10.1016/j.apenergy.2024.123256.

7. Jin Y., Hou L., Chen Y. (2022). A time series transformer based method for the rotating machinery fault diagnosis. Neurocomputing. 494: 379-395. DOI 10.1016/j.neucom.2022.04.111.

8. Kandasamy K., Vysyaraju K. R., Neiswanger W., Paria B., Collins C. R., Schneider J., Poczos B., Xing E. P. (2020). Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly. The Journal of Machine Learning Research. 21(1): 3098-3124.

9. Kozlov V. M, Ivanova E. S. (2023). Adaptive algorithms for tuning hyperparameters of neural networks. Izvestia RAN. Theory and control systems. 2: 78-89. (In Russian)

10. Li J. Y., Zhan Z. H., Wang C. (2021). Evolutionary Deep Learning Survey. Neurocomputing. 442: 89-109.

11. Li Y., Dong J., Jiang H., Su D. (2023). Multi-head spatio-temporal attention based parallel GRU architecture: a novel multi-sensor fusion method for mechanical fault diagnosis. Measurement Science and Technology. 35. DOI 10.1088/1361-6501/acf89e.

12. Li Z., Fan R., Ma J., Ai J., Dong Y. (2024). Dynamic temporal denoise neural network with multihead attention for fault diagnosis under noise background. Sensors. 24(21): 6813. DOI 10.3390/s24216813.

13. Liu X., Wu J., Zhou Z. (2021). Hyperparameter Exploration LSTM-Predictor (HELP). Neurocomputing. 442: 161-172.

14. Mashoshin O. F., Huseynov H. (2025). Development of an Integrated Algorithm for Processing Aircraft GTE Diagnostic Parameters Using Multilayer Neural Networks. Kontrol'. Diagnostika. 28 (07): 41-54. (In Russian). DOI 10.14489/td.2025.07. pp.041-054.

15. Pei X., Zheng X., Wu J. (2021). Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning. IEEE Transactions on Instrumentation and Measurement. 70: 1-11.

16. Sembiring J., Sasongko R. A., Bastian E. I., Raditya B. A., Limansubroto R. E. (2024). A deep learning approach for trajectory control of tilt-rotor UAV. Aerospace. 11(1): 96.

17. Smith L. N. Cyclical learning rates for training neural networks. (2017). IEEE Winter Conference on Applications of Computer Vision. 464-472.

18. Tahan M., Tsoutsanis E., Muhammad M., Karim Z. A. A. (2017). Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy. 198: 122-144.

19. Tsoutsanis E., Meskin N., Benammar M., Khorasani K. (2019). A review on gas turbine gas-path diagnostics: state-of-the-art methods, challenges and opportunities. Aerospace. 6(7): 83.

20. Zhou D., Yao Q., Wu H., Ma S., Zhang H. (2020). Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks. Energy. 200. DOI 10.1016/j.energy.2020.117467.


Review

For citations:


Huseynov H., Mashoshin O.F. On the experimental setup for approbation of an algorithm for processing diagnostic parameters of aircraft Gas Turbine Engine based on multilayer neural networks. Crede Experto: transport, society, education, language. 2025;(3):71-85. (In Russ.) https://doi.org/10.51955/2312-1327_2025_3_71

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)