The research of the immunity of the multisystem GNSS reciever
https://doi.org/10.51955/2312-1327_2023_2_28
Abstract
The article presents the results of a study of the noise immunity of the ATGM336H multi-system GNSS receiver to the influence of narrow-band interference at the L1 frequency set for one of the systems (GLONASS or GPS). The review of existing works on the study of noise immunity of satellite navigation receivers is carried out. The method of conducting experiments is presented. The simulator CH-3803M was used as a signal source from navigation satellites. The analysis of the results obtained during the experiments for the formulation of narrow-band interference of various capacities via GPS and GLONASS channels is carried out.
About the Authors
R. O. ArefyevRussian Federation
Roman O. Arefyev, Candidate of Technical Sciences, Associate Professor
3, Kommunarov str. Irkutsk, 664047
O. N. Skrypnik
Belarus
Oleg N. Skrypnik, Doctor of Technical Sciences, Full professor
77, Uborevich str. Minsk, 220096
M. A. Mezhetov
Russian Federation
Muslim A. Mezhetov, Candidate of Physical and Mathematical Sciences
3, Kommunarov str. Irkutsk, 664047
References
1. Arefyev R. O., Skrypnik O. N., Arefyeva N. G. (2022). The Experience Of Using GNSS softwaredefined recievers. Crede Experto: transport, society, education, language. № 1: 88-100. DOI 10.51955/23121327_2022_1_88. EDN JTMAYO (In Russian)
2. Borio D., O'Driscoll C., Fortuny J. (2013). Jammer impact on Galileo and GPS receivers. International Conference on Localization and GNSS (ICL-GNSS), IEEE. 1-6.
3. Elghamrawy H., Karaim M., Tamazin M., Noureldin A. (2020). Experimental Evaluation of the Impact of Different Types of Jamming Signals on Commercial GNSS Receivers. Applied Sciences. 10(12): 4240.
4. Ermakov A. K., Portnova T. Yu., Lezhankin B. V., Erokhin V. V. (2021). Trajectory control algorithms for unmanned aircraft complexes flying in formation. Volnovaya elektronika i infokommunikacionnye sistemy : Materialy XXIV Mezhduna-rodnoj nauchnoj konferencii. In 3-th parts, Saint-Petersburg: Saint Petersburg State University of Aerospace Instrumentation. 2: 62-69. EDN YIEIWM. (In Russian)
5. Evdokimov Yu. K., Sagdiev R. K. (2016). Research of the noise immunity of the GPS/GLONASS navigation receivers. Novye tekhnologii, materialy i oborudovanie rossijskoj aviakosmicheskoj otrasli: sbornik dokladov Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem: in 2-h volumes, Kazan: Tatarstan Academy Of Sciences: 320-324 (In Russian)
6. Glomsvoll O. Jamming of GPS & GLONASS signals. Department of Civil Engineering. Nottingham Geospatial Institute, 2014. 80 p.
7. Glomsvoll O., Bonenberg L. K. (2017). GNSS jamming resilience for close to shore navigation in the Northern Sea. The Journal of Navigation. 70(1): 33-48.
8. Humphreys T. E., Ledvina B. M., Psiaki M. L., O’Hanlon B. W., Kintner P. M. (2008). Assessing the spoofing threat: Development of a portable GPS civilian spoofer. Proceedings of 21st International Technical Meeting of the Satellite Division of the Institute of Navigation. 2314-2325.
9. Korovin A. V., Mironov V. A., Novikov A. A., Truscinskiy A. Yu., Fateev Y. L. (2016). The noise stability estimating method of perspective navigation receiver GNSS un-manned aerial vehicle. Journal of Siberian Federal University. Engineering & Technologies. 9(8): 1162-1171. (In Russian)
10. Mosavi M. R., Khavari A., Tabatabaei A., & Rezaei M. J. (2017). Jamming mitigation using an improved fuzzy weighted least square method in combined GPS and GLONASS receiver. AEUInternational Journal of Electronics and Communications. 76: 107-116.
11. Skrypnik O. N., Arefiev R. O., Arefeva N. G. (2019). Estimation of positioning error characteristics of combined GLONASS / GPS receivers. Modern high technologies. 10-2: 296-301. (In Russian)
12. Skrypnik O. N., Aref'ev R. O. (2020). Accuracy characteristics of multi-system GPS/GLONASS/Beidou recievers. Nauchno-prakticheskij zhurnal aviacionnyj vestnik. 3: 26-30. (In Russian)
13. Tolstikov A. S, Ushakov A. E. (2018). Countering spoofing and improving the noise immunity of coordinate-time definitions of GNSS technologies. Interekspo Geo-Sibir'. 9: 319-327. (In Russian)
14. Turintsev S. V., Turintseva M. S. (2022). Software implementation of the algorithm for coding and decoding the location of the target in the discrete-address mode of secondary radiolocation. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii: Sbornik trudov XI Mezhdunarodnoj nauchno-prakticheskoj konferencii. posvyashchennoj prazdnovaniyu 100-letiya konstruktorskogo byuro "Tupolev", 55-letiya Irkutskogo filiala MGTU GA, 75-letiya Irkutskogo aviacionnogo tekhnicheskogo kolledzha. Irkutsk: Irkutsk branch Moscow State Technical University of Civil Aviation. 115-121. EDN YGUUUY. (In Russian)
15. Valeev V. G., Kornilov I. N., Ivanov V. E. (2011). Experimental survey of noise immunity of user equipment of satellite radio navigation systems. Radioengineering. 9: 46-51 (In Russian)
16. Voznuk V. V., Maslakov P. A., Fomin A. V. (2016). The research of the noise immunity of users’ GPS equipment based on the SDR technology. Trudy Voenno-kosmicheskoj akademii imeni AF Mozhajskogo. Saint-Petersburg: Mozhaisky Military Space Academy. 650: 33-40. (In Russian)
Review
For citations:
Arefyev R.O., Skrypnik O.N., Mezhetov M.A. The research of the immunity of the multisystem GNSS reciever. Crede Experto: transport, society, education, language. 2023;(2):28-43. (In Russ.) https://doi.org/10.51955/2312-1327_2023_2_28
JATS XML
