Preview

Crede Experto: transport, society, education, language

Advanced search

The time-optimal synthesis technique flight paths of an unmanned aircraft

https://doi.org/10.51955/2312-1327_2024_2_134

Abstract

The article considers the method of synthesis of an optimal UAV flight path and an algorithm of the flight control system. The system and algorithm are designed for four-dimensional (4D) trajectory-based operations (TBO) in the context of the CNS/ATM and PBN concepts, which will increase the operational efficiency of the UAV navigation and piloting processes. The paper presents a mathematical model of the control object and algorithms for forming a time-optimal flight path. An assessment of the proposed methodology is also presented by verifying and validating the system software using simulation modeling. The results obtained demonstrate the functional capabilities of the control system to create time-optimal profiles of trajectories that meet operational requirements.

About the Authors

O. N. Skrypnik
Belarusian State Academy of Aviation
Belarus

Oleg N. Skrypnik, Doctor of Technical Sciences, Full professor

77, Uborevich str., Minsk, 220096



E. V. Kurylenko
Belarusian State Academy of Aviation
Belarus

Ekaterina V. Kurylenko, post-graduate student

77, Uborevich str., Minsk, 220096



References

1. Belinskaya Yu. S., Chetverikov V. N. (2014). The method of covers for terminal control, taking into account restrictions. Differential equations. 50(12): 1629 р. (in Russian)

2. Chernous'ko F. L. (1965). The method of local variations for the numerical solution of variational problems. Zh. vychisl. matem. i matem. fiz. 5(4): 749-754. (in Russian)

3. Fetisov D. A. (2014). Solving terminal problems for multidimensional affine systems based on the transformation to a quasi-canonical form. Vestnik MGTU im. N. E. Baumana. Estestvennye nauki, 5(56): 16-31. (in Russian)

4. Global TBO Concept (Version 0.11). By the ICAO Air traffic management requirements and performance panel (ATMRPP) (2019). Available at: https://www.icao.int/airnavigation/tbo/PublishingImages/Pages/Why-Global-TBO-Concept/Global%20TBO%20Concept_V0.11.pdf (accessed 13 May 2024).

5. Gorbatenko S. A., Makashov E. M., Polushkin Yu. F., Sheftel' L. V. (1971). Calculation and analysis of the movement of aircraft: Engineering reference book. Moscow: Mashinostroenie, 1971. 352 р. (in Russian)

6. Hoffner K., Guay M. (2009). Geometries of Single-Input Locally Accessible Control Systems. Proceedings of the ACC Conference. 1480-1484.

7. Kanatnikov A. N., Shmagina E. A. (2010). The task of terminal motion control of the aircraft. Nonlinear dynamics and contr. Moscow: Fizmatlit, 2010. P.79-94. (in Russian)

8. Kasatkina T. S. (2013). Transformation of affine systems to a canonical form using substitutions of an independent variable. Nauka i Obrazovanie. 7: 285-298. (in Russian)

9. Krasnoshchyochenko V. I., Krishchenko A. P. (2005). Nonlinear systems: geometric methods of analysis and synthesis. Moscow: Izd-vo MGTU im. N.E. Baumana, 2005. 520 p. (in Russian)

10. Krishchenko A. P. (2013). Orbital linearization of affine systems. Doklady Akademii nauk, 453(6): 620-623. (in Russian)

11. Krylov I. A., Chernous'ko F. L. (1966). Solving optimal control problems by the method of local variations. Zh. vychisl. matem. i matem. fiz. 6(2): 203-217. (in Russian)

12. Kuznecov M. N. (2013). Terminal control of an aeroballistic high-speed aircraft. dis. …kand. tekh. nauk / M. N. Kuznecov. Moscow, 2013. 145 p. (in Russian)

13. Levine J., Martin Ph., Rouchon P. (1997). Flat systems. Mini-Course. ECC' 97 European Control Conference. 54.

14. Li S.-J., Respondek W. (2015). Orbital feedback linearization for multi-input control systems. International Journal of Robust and Nonlinear Control. 25(9): 1352-1378.

15. Moiseev V. S. (2023). Applied theory of control of unmanned aerial vehicles: monograph. Kazan': GBU Respublikanskij centr monitoringa kachestva obrazovaniya. Seriya «Sovremennaya prikladnaya matematika i informatika», 2023. 768 p. (in Russian)

16. Ramasamy S, Sabatini R, Gardi A, Kistan T. (2014a). Next Generation Flight Management System for Real-Time Trajectory Based Operations. Applied Mechanics and Materials. 629: 344-349.

17. Ramasamy S., Sabatini R., Gardi A. (2014b). Unmanned Aircraft Mission Management System for Trajectory Based Operations. Fourth Australasian Unmanned Systems Conference, 2014.

18. Skrypnik O. N. (2019). Radio Navigation Systems for Airports and Airways. Berlin: Springer Aerospace Technology, 2019. 226 p.

19. Xie Y., Gardi A., Sabatini R., Liang A. (2022). Hybrid AI-based Dynamic Re-routing Method for Dense Low-Altitude Air Traffic Operations. IEEE/AIAA 41st Digital Avionics Systems Conference. 1-9. doi: 10.1109/DASC55683.2022.9925777.


Review

For citations:


Skrypnik O.N., Kurylenko E.V. The time-optimal synthesis technique flight paths of an unmanned aircraft. Crede Experto: transport, society, education, language. 2024;(2):134-149. (In Russ.) https://doi.org/10.51955/2312-1327_2024_2_134

Views: 11

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-1327 (Online)