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Аннотация. Точность измерения местоположения воздушных судов (ВС) напрямую 

влияет на безопасность полётов и является одной из важнейших тактических 

характеристик. Внедрение новых перспективных средств наблюдения, таких как 

многопозиционные системы наблюдения (МПСН), может значительно повысить уровень 

безопасности полётов, а также улучшить эффективность использования воздушного 

пространства. В статье рассматривается задача улучшения качества функционирования 

МПСН и повышения точности оценки координат воздушных судов (ВС). Точность 

определения местоположения определяется погрешностью измерения времени прихода 

сигнала в условиях влияния шумов и помех. Случайные возмущения необходимо 

учитывать для обеспечения качественной работы МПСН, что достигается путем 

применения методов Калмановской теории фильтрации. Поэтому для решения задачи 

оценивания переменных состояния МПСН предлагается использовать фильтр Калмана 

(ФК). Эффективность применения фильтра Калмана зависит от адекватности 

математических моделей и реальных процессов. Неточности моделей, связанные с 

функционированием навигационных систем, приводят к расходимости ФК. В работе 
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приведены результаты теоретических исследований и имитационного моделирования 

процессов функционирования МПСН на основе реализации алгоритма ФК. 
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Abstract. The accuracy of aircraft position measurements directly affects flight safety and 

is one of the most important tactical characteristics. The introduction of new advanced surveillance 

tools, such as multi-position surveillance systems (MPSS), can significantly increase the level of 

flight safety, as well as improve the efficiency of airspace use. The authors consider the task of 

improving the quality of MPSS functioning and increasing the accuracy of estimating the aircraft 

coordinates. The accuracy of position-fixing is determined by the error in measuring the time of 

signal arrival under the influence of noise and interference. Random disturbances must be taken 

into account to ensure high-quality MPSS operation. This is achieved by applying the methods of 

Kalman filtration theory. Therefore, to solve the problem of estimating the MPSS state variables, 

it is proposed to use a Kalman filter (KF). The effectiveness of using the Kalman filter depends on 

the adequacy of mathematical models and real processes. Model inaccuracies associated with the 

functioning of navigation systems lead to KF divergence. The paper presents the results of 

theoretical studies and simulating the MPSS functioning processes based on the implementation 

of the KF algorithm. 

Keywords: Kalman filter, divergence of the filtering process, estimation algorithm, multi-

position surveillance system, random disturbances, aircraft. 
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Введение 

Гражданская авиация является активно развивающейся отраслью 

промышленности и играет важную роль в обеспечении экономического 

развития Российской Федерации. Увеличение интенсивности воздушного 

движения послужило началом модернизации Единой системы организации 

воздушного движения (ЕС ОрВД). Для обеспечения эффективного 

функционирования системы УВД предлагается использовать 

многопозиционную систему наблюдения (МПСН).  

Системный анализ принципов построения и функционирования МПСН 

показал значительные преимущества МПСН по сравнению с существующими 

классическими средствами наблюдения – возможность использования 

системы в труднодоступных районах для радиолокационных средств, а также 

простота обслуживания [Исследование…, 2023; Лежанкин и др., 2019].  

Точность измерения местоположения воздушных судов (ВС) напрямую 

влияет на безопасность полётов и является одной из важнейших тактических 

характеристик. Внедрение новых перспективных средств наблюдения, таких 

как МПСН, может значительно повысить уровень эффективности 

использования воздушного пространства [Синтез…, 2022]. При этом важное 

значение имеет исследование точностных характеристик МПСН в 

зависимости от конфигурации параметров системы. 

Точность определения местоположения ВС характеризуется качеством 

измерения времени прихода сигнала в условиях влияния шумов и помех 

[Арефьев и др., 2021; Применение…, 2021; Туринцев и др., 2022]. Случайные 

возмущения необходимо учитывать для обеспечения качественной работы 

МПСН, что достигается путем применения методов Калмановской теории 

фильтрации [Формирование…, 2008; Using…, 2022]. При синтезе алгоритмов 

оценки параметров МПСН, необходимо учитывать случайные возмущения 

для обеспечения качественной работы в условиях действующих шумов и 

помех, что достигается путем применения различных методов, в том числе, 

методов Калмановской теории фильтрации. Эффективность применения 

фильтра Калмана (ФК) существенно зависит от степени соответствия 

математических моделей реальным процессам. Неточности моделей, 

связанные с функционированием радионавигационных систем, приводят к 

появлению эффекта расходимости ФК. 

На основе анализа вышеизложенного можно сделать вывод о том, что 

исследование точностных характеристик МПСН и повышение эффективности 

определения координат ВС в условиях воздействия случайных возмущений 

является актуальной научно-исследовательской задачей. 

Цель работы – разработка алгоритма определения переменных вектора 

состояния многопозиционной системы наблюдения и исследование 

расходимости процессов фильтрации. 
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Постановка задачи 

В основе принципа работы МПСН при определении положения 

приёмоответчика ВС лежат измерения на приемных пунктах значений 

псевдозадержки принятых сигналов, которые можно представить в виде: 

( ) ( )
1

ˆˆ, ,f ( ),
=

= +
n

вх i Дi
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U t S t n t  
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 – принимаемый i-ым ПП сигнал с амплитудой Аi,; ω0i – 

несущая частота; φ0i – случайная начальная фаза; 
˘

i  – псевдозадержка; 
˘

Дi
f  – 

псевдодоплеровское смещение частоты; 
˘ ˘

, i iДК НС
G t G t    − −   

   
 – 

координатная часть в виде преамбулы и информационное сообщение, 

содержащее данные о воздушном судне, параметрах его движения; ( )n t  – 

белый гауссовский шум (БГШ). 

Измеренную псевдодальность представим в виде: 
˘ ˘

2 2 2( ) ( ) ( )i i i i i i i i
D c D D x x y y z z D= = + = − + − + − +  , (1) 

где 
i

D  – расстояние от ВС до i-й приемной станции; , ,x y z  – координаты ВС; 
˘

 i – измеренное значение времени прихода сигнала от ВС до приемного 

пункта; с – скорость распространения радиоволн; 
i

D  – погрешность 

измерения дальности. 

Все псевдодальномерные измерения можно объединить в вектор, 

состоящий из сигналов n видимых приемных станций: 
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где , 1,
jl

n l n=  – дискретные БГШ (ДБГШ) с нулевыми математическими 

ожиданиями и дисперсией ( )2

0
/ 2

n d
N T = ; 

1d j j
T t t

−
= −  – шаг дискретизации. 

 

Синтез алгоритма 

Применительно к задаче дискретной фильтрации, в предположении 

Марковского характера процесса 


x , алгоритм вычисления значений 

апостериорной плотности вероятности (АПВ) имеет вид: 
 

( ) ( ) ( )1

0 0k
p cp p 
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ap
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Уравнения (3) – (5) позволяют рекуррентно вычислять значение АПВ 

( )0
p 


x ξ  на -м шаге по соответствующему значению той же плотности на 

предыдущем шаге. Начальные условия для такой рекуррентной процедуры 

описываются выражением (5). 

При использовании метода максимума правдоподобия для обработки 

аддитивной смеси полезного сигнала и шума напряжение на выходе 

дискриминатора запишем в виде 

( )
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M
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M
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    , вектор состояния ( )1
  ;  ,  

T
M

Д
f p=x ξ x – функция правдоподобия. 

Применительно к рассматриваемой задаче АПВ ( )1
,Mp ξ x  представим в 

виде: 
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1
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1

1
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2
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ξ x D , (6) 

На основании выражений (3) – (6) вычисляются оценки времени 

задержки ̂  и доплеровского сдвига частоты ˆ
Д

f , соответствующие максимуму 

АПВ: 

  ( )0

0,
ˆ, ˆ ,

Д

t T

Д Д t
f

f max p f Y


  +
= . 

Модель динамики параметров МПСН представим в виде: 

1 , 1
,TV
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 

− −
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, , 1 , 1
,V V n
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где T – время наблюдения; 
,

n
 

 – ДБГШ с известной дисперсией 
n

D


; V


 – 

скорость изменения времени задержки сигнала;   – временной индекс. 

Уравнение наблюдения представим в виде: 

,
,n
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 = +      (9)

 

где 
,

n
 

 – ДБГШ с дисперсией 
n

D

. 

На основе моделей (7) – (9) синтезирован алгоритм оценки параметров 

МПСН в скалярном виде: 
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где 
,i v

K  – коэффициенты усиления фильтра Калмана в выражениях для оценки 

соответствующих переменных; Rij – элементы главной диагонали матрицы 

ошибок R [Assad et al., 2019]. 

Матрица R вычисляется на основе выражений: 

 1 1 T / ,
n

D


− −= +
ν

R R H H   

 
, 1 1 , 1

GG ,T T

n
D

     − − −
= +R Φ R Φ   

где 
ν

R  – экстраполированная матрица.  

При реализации перехода от скалярного вида к векторно-матричному 

получаем следующую форму записи уравнений (7) – (9): 

 
, 1 1 , 1 , 1

,
x      − − − −

= +x Φ x G n   

 
,
,

    
= +ξ H x n   

 
1 0

, , 1 0 .
0 1 1

T
= = =Φ G H   

Алгоритм оптимальной фильтрации вектора состояния представим в 

векторно-матричном виде: 

( )/ 1 / 1
ˆ ˆ ˆ
       − −
= + −x x K ξ H x ,                                            (10) 

, 1 1 , 1 , 1 1 , 1

T T

          − − − − − −
= +R Φ R Φ G Q G , 

1

1

T T

      

−

−
 = + K R H H R H V , 

    
= −R I K H R ,      (11) 

Алгоритм позволяет решить задачу фильтрации параметров МПСН, 

состоящую в нахождении наилучшей оценки времени прихода сигнала по 

результатам псевдодальномерных измерений при наличии ошибок, вызванных 

действием случайных возмущений. 

 

Результаты моделирования и исследования 

В работе выполнено исследование характеристик алгоритма 

оптимальной фильтрации параметров МПСН на основе специализированного 

программного обеспечения. В качестве исходных данных выбраны значения 

параметров, которые представлены в [Исследование…, 2023; Лежанкин и др., 

2019]. 

Для оценки качества измерений разности времён прихода переданного 

приемоответчиком объекта сигнала на рис. 1 представлены ошибки оценки 

ˆ −  и СКО 


 , на рис. 2 приведены графики ошибки оценки ˆV V
 
−  и 

среднеквадратического отклонения 
V

 . Представленные на рисунках 1, 2 

результаты показывает достаточно высокую точность оценки параметров 

сигналов МПСН при совпадении фактических и расчетных параметров 

фильтра Калмана.  

В то же время при работе фильтра Калмана может наблюдаться 

расходимость процессов фильтрации, как показано на графиках, приведенных 

на рисунках 3 и 4, при несоответствии между принятыми моделями и 
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реальными процессами. Такое несоответствие, как показывают результаты 

исследований, представленные на рисунках 3 и 4, приводит к расходимости 

процессов фильтрации, т. е. к отличию между расчетным значением 

дисперсии ошибки оценивания и действительной ошибкой.  

Расходимость возникает из-за того, что вероятностные характеристики 

шума наблюдений 
, 

n  неизвестны и не учитываются в выражениях (4), (5) 

алгоритма фильтрации, при этом возникают расхождения между реальными 

процессами и моделями, принятыми в фильтре.  

Расходимость процессов фильтрации приводит к увеличению дисперсии 

ошибки параметров МПСН, что демонстрируется на рисунках 5, 6.  

 

 
Рисунок 1 – Ошибка оценки времени 

задержки 

 

 

 
 

Рисунок 3 – Ошибка оценки времени 

задержки при расходимости 

 

 
Рисунок 2 – Ошибка оценки 

скорости изменения времени 

задержки 

 

 

 
Рисунок 4 – Ошибка оценки 

скорости изменения времени 

задержки при расходимости 
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Рисунок 5 – Дисперсия ошибки оценки 

времени задержки: 

1 – при корректной работе;  

2 – при расходимости. 

 
Рисунок 6 – Дисперсия ошибки 

оценки скорости изменения 

времени задержки: 

1 – при корректной работе; 

2 – при расходимости. 

 

Анализ представленных результатов показывает необходимость 

исследования эффекта расходимости процессов фильтрации и разработки 

новых подходов к оценке параметров МПСН для устранения данной 

проблемы, что и предопределяет актуальность выбранного направления 

исследований. 

 

Анализ проблемы расходимости процессов фильтрации 

При использовании алгоритмов Калмановского типа при обработке 

информации в МПСН возникают ситуации, когда действительные ошибки 

фильтрации превышают теоретически рассчитанные значения. Это явление 

называется расходимостью (неустойчивостью) фильтра Калмана. Причины 

расходимости заключаются в неточном задании моделей процессов 

сообщения и наблюдения, отсутствии достоверной информации о реальных 

физических процессах. Расходимость вызывают ошибки моделирования 

шумов в условиях статистической неопределенности их вероятностных 

характеристик [Болелов, 2021]. 

Основная причина расходимости процесса фильтрации – быстрое 

стремление к нулю коэффициента передачи (усиления) К фильтра Калмана, 

как показано на рисунках 7, 8. При этом процесс оценивания перестает быть 

зависимым от обновляющей информации, содержащейся в 

последовательности наблюдений, и рост ошибки не влияет на формирования 

оценки. 
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Рисунок 7 – Коэффициент усиления 

фильтра 𝐾1,𝑣  

 
Рисунок 8 – Коэффициент усиления 

фильтра 𝐾2,𝑣 

 

Следует отметить, что эффект расходимости – явление сложное и 

противоречивое, требующее проведения глубоких исследований 

применительно к решению конкретной задачи повышения эффективности 

функционирования МПСН. 

В работе [Сейдж и др., 1976] рассматриваются методы устранения 

расходимости применительно к различным задачам. В основе рассмотренных 

методов лежит идея ограничения коэффициента усиления, чтобы избежать 

«нечувствительности» процесса фильтрации к вновь поступающей 

последовательности наблюдений. 

Для уменьшения матричного коэффициента усиления предлагается 

использовать процедуру, состоящую в ограничении элементов матрицы снизу 

некоторой заранее выбранной величиной, либо можно добавить к элементам 

матрицы некоторую величину [Марковские модели…, 2019]. Например, в 

работе [Schmidt et al., 1968] для расчета матричного коэффициента усиления 

предлагается использовать следующее выражение:  

1
T T

      


−

   = + +   K R I H H R H V . 

Предложенный подход можно использовать для ограничения элементов 

матрицы дисперсий ошибок  


R . В работе [Andrews, 1968] был развит другой 

подход, позволяющий контролировать нестабильность, который состоит в 

вычислении квадратного корня из матрицы 


R . При рассмотрении данного 

способа вносится предположение, что шум модели равен нулю. Уравнение для 

матрицы ковариаций  


R  при 0

=G  записывается в виде: 

    
= −R I K H R , 

где 
, 1 1 , 1

T

     − − −
=R Φ R Φ  – экстраполированная матрица ковариаций. 

Показано, что корень из матрицы 


R  равен 
1/2 1/2

, 1 1 , 1

T

     − − −
=R Φ R Φ ; 

   
1 1

1 11 1 1

2 22 2 2
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− −

− −
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где используется нижняя треугольная матрица корней из дисперсий. Для 

случая непрерывного времени аналогичные выражения были предложены в 

[Andrews, 1968]. 

Перспективным направлением устранения эффекта расходимости 

является применение адаптивных алгоритмов фильтрации. Применение 

адаптивных алгоритмов представляется более эффективным ввиду того, что 

из-за расходимости величина ошибки становится относительно большой, что 

даёт возможность использовать большее количество информации для 

адаптации [Воскобойников, 2015]. Разработка и исследование алгоритмов 

адаптивной фильтрации параметров МПСН рассматривается в качестве 

приоритетного направления дальнейших исследований.  

 

Заключение 

Разработан алгоритм оценки переменных вектора состояния МПСН при 

использовании АЗН-В: времени, скорости и ускорения изменения времени 

задержки прихода сигнала на основе Калмановской теории фильтрации. 

Проведены исследования точностных характеристик МПСН наблюдения с 

применением специализированного программного обеспечения. Анализ 

представленных результатов показывает высокую точность оценки 

параметров при совпадении фактических и расчетных параметров фильтра 

Калмана. В то же время при несоответствии между принятыми моделями 

фильтра Калмана и реальными процессами на выходе алгоритма наблюдается 

расходимость процессов фильтрации, которая проявляется в отличии между 

расчётной и действительной ошибкой оценивания. Показано, что 

расходимость процессов фильтрации приводит к увеличению дисперсии 

ошибки оценки параметров МПСН. Обоснована необходимость разработки 

новых подходов к оценке переменных вектора состояния для устранения 

расходимости. Рассмотрены методы устранения неустойчивости 

функционирования разработанного алгоритма, при этом разработка и 

исследование алгоритмов адаптивной фильтрации параметров МПСН 

выбраны в качестве приоритетного направления дальнейших исследований. 
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